Potassium currents dynamically set the recruitment and firing properties of F-type motoneurons in neonatal mice
Published in Revue Tiers Monde
Published in Revue Tiers Monde
Published in European Urology
Published in Current Opinion in Immunology
Published in The Lancet
Spinal motoneurons may display a variety of firing patterns including bistability between repetitive firing and quiescence and, more rarely, bistability between two firing states of different frequencies. It was suggested in the past that firing bistability required that the persistent L-type calcium current be segregated in distal dendrites, far a...
Published in Sexually Transmitted Diseases
In amyotrophic lateral sclerosis (ALS), an adult onset disease in which there is progressive degeneration of motoneurones, it has been suggested that an intrinsic hyperexcitability of motoneurones (i.e. an increase in their firing rates), contributes to excitotoxicity and to disease onset. Here we show that there is no such intrinsic hyperexcitabil...
FR
Published in The Journal of Clinical Endocrinology & Metabolism
Since their discovery in the late 19th century our conception of motoneurons has steadily evolved. Motoneurons share the same general function: they drive the contraction of muscle fibers and are the final common pathway, i.e., the seat of convergence of all the central and peripheral pathways involved in motricity. However, motoneurons innervate d...
Published in American Heart Journal
We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intrace...
Published in American Heart Journal
The fast contraction time of mouse motor units creates a unique situation in which motoneurons have to fire at low frequencies to produce small forces but also at very high frequency (much higher than in cat or rat motoneurons) to reach the fusion frequency of their motor units. To understand how this problem is solved, we performed intracellular r...
FR
FR
France