The work of the Ares lab centers on the mechanisms and regulation of splicing. Splicing is required to remove intron sequences from pre-mRNA and create coding sequences for translation. Ares' group tries to understand: (1) the mechanism of action of the core components of the spliceosome, in particular the snRNAs and their rearrangements during assembly of the spliceosome and catalysis of the splicing reactions, (2) the regulation of alternative splicing at a mechanistic level including the coupling of splicing to transcription and RNA decay mechanisms, and (3) the coordinate regulation of splicing events in developing systems.
Manuel Ares
Summary
Published articles Show More
A new alpha-helical extension promotes RNA binding by the dsRBD of Rnt1p RNAse III.
...Published in The EMBO Journal
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded ...
Bacterial RNA isolation.
Published in Cold Spring Harbor Protocols
In this bacterial RNA isolation protocol, an "RNA-protective" treatment is followed by lysozyme digestion of the peptidoglycan component of the cell wall. EDTA promotes the loss of the outer membrane of Gram-negative bacteria and allows the lysozyme better access to the peptidoglycan. Cells begin to lyse during digestion in hypotonic lysozyme buffe...
Gene structure-based splice variant deconvolution using a microarray platform.
...Published in Bioinformatics