Ex-vivo Survival Mechanisms used by Vibrio cholerae between Epidemics: Fitnat Yildiz's laboratory investigates signaling and regulatory networks of Vibrio cholerae, the causative agent of the Asiatic cholera. She and her colleagues are particularly interested in those mechanisms that allow the pathogen to adapt to changes in its habitat. The bacteria's ability to survive in different growth modes in aquatic environments is closely linked to seasonal epidemics of cholera. Yildiz's laboratory is attempting to identify and characterize genes and processes associated with phase variations of the pathogen. Their results will be useful for prediction and control of epidemics of this devastating disease.
Fitnat Yildiz
Summary
Published articles Show More
Phenotypic analysis reveals Haiti cholera epidemic linked to hypervirulent strain.
Published in Infection and Immunity
Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vi...
Published in Journal of Bacteriology
Vibrio cholerae switches between free-living motile and surface-attached sessile lifestyles. Cyclic diguanylate (c-di-GMP) is a signaling molecule controlling such lifestyle changes. C-di-GMP is synthesized by diguanylate cyclases (DGCs) that contain a GGDEF domain and is degraded by phosphodiesterases (PDEs) that contain an EAL or HD-GYP domain. W...
VpsR, a Member of the Response Regulators of the Two-Component Regulatory Systems, Is Required for Expression of vps Bio...
Published in Journal of Bacteriology
The rugose colonial variant of Vibrio cholerae O1 El Tor produces an exopolysaccharide (EPS(ETr)) that enables the organism to form a biofilm and to resist oxidative stress and the bactericidal action of chlorine. Transposon mutagenesis of the rugose variant led to the identification of vpsR, which codes for a homologue of the NtrC subclass of resp...