REVERSING VALVE AND HOUSEHOLD WATER PURIFIER INCLUDING SAME TECHNICAL FIELD
Description
TECHNICAL FIELDThe present invention relates to the field of liquid purification technologies, and in particular, to a reversing valve and a household water purifier including the valve.BACKGROUNDDue to the risk of secondary pollution during transportation in municipal water supply, household water purifier devices gradually enter the life of ordinary people. Existing water purifiers mainly consist of various filtering media having different properties and cylinders. The filtering media are used for removing various impurities or contaminants in tap water, and the cylinder parts are used for accommodating the filtering media and connecting the filtering media to municipal water supply pipelines.Because of the difference in water conditions, municipal water supply varies from area to area in water quality; for example, the average water hardness in the northern area is higher than that in the mid-eastern area, and the average water hardness in the mid-eastern area is higher than that in the southern area. Generally speaking, the phenomenon of incrustation after heating of drinking water is common in areas having high water hardness. In order to solve the problem of incrustation, most of water purifier manufacturers use a reverse osmosis membrane filtration technology to manufacture reverse osmosis water purification machines.A small reverse osmosis water purification machine cannot meet a user's water demand if used directly because of a small pure water flow (50 gallons/day to 200 gallons/day) of a membrane element; and thus a water storage tank is used to store pure water, and pure water is discharged from the water storage tank when the user turns on a tap. The water storage tank is provided with two cavities separated by an elastic diaphragm with one cavity used for storing pure water and the other cavity storing compressed air; the compressed air has a certain pressure, and pure water can be forced out of the tap when the user turns on the tap.When no pure water exists in the water storage tank, the compressed air has the largest volume and the lowest pressure; when the amount of pure water in the water storage tank increases, the volume of the compressed air gradually decreases andthe pressure thereofincreases, and the back pressure of the reverse osmosis membrane element increases accordingly. Because the pressure of tap water varies from place to place, and a certain pressure difference (the pressure difference is equal to the forward pressure of the reverse osmosis membrane minus the back pressure of the water storage tank) is required for maintaining normal operation of the reverse osmosis membrane, each water purifier manufacturer installs a booster pump in a water purification machine to overcome the back pressure of the water storage tank. The booster pump requires associated electrical parts such as a power source, an electromagnetic valve, and a pressure switch; as a result, product costs are increased, and the faulty rate is also increased.Besides, when the water storage tank is full of water, the compressed air has the smallest volume and the largest pressure, and the largest water flow is output at the instant the user turns on the tap; however, as the pure water in the water storage tank decreases, the compressed air expands in volume, the pressure becomes smaller, and an increasingly smaller water flow is output from the tap; the user will then have a poor experience in the continuous use of water, and the waiting time of the user is also increased.In order to solve the problem of the water storage tank, some manufacturers choose to increase the size (more than 400 gallons/day) of the reverse osmosis membrane element and eliminate the water storage tank, so that the flow obtained when the user turns on the tap is directly the seepage flow of the reverse osmosis membrane. However, the costs of the large-size membrane element are high, and an associated booster pump of higher power is required, which leads to serious noise and vibration problems, increasing users' cost and negatively affecting users' experiences. Moreover, after the reverse osmosis pure water machine stands still for a period of time, the filtration efficiency in the initial operation of the membrane becomes low, and the content of total dissolved solids (TDS) in water discharged by the user from the tap becomes high, resulting in a poor taste. Furthermore, due to the great influence of water temperature on the seepage flow of the reverse osmosis membrane, the pure water machine without a water storage tank has a smaller water flow output from the tap when the temperature is low in winters or in spring and autumn, thereby affecting user experience.In order to solve the aforementioned problem, the patentWO200168227A1discloses a reverse osmosis pure water machine without a pump, wherein the pure water machine needs to use a water storage tank, but there is no pressure in the water storage tank. By using a mechanical reversing valve, when the user needs to use water, the reversing valve operates to introduce the pressure of tap water into the water storage tank to force purewater out of the tap; when the user turns off the tap, the reversing valve operates again to release the pressure of the water storage tank into a drainage pipeline. Because there is no pressure in the water storage tank, a booster pump is not required, pure water can be produced by directly using the pressure of tap water, and is replenished into the water storage tank; when the water storage tank is filled up, pure water cannot enter the water storage tank any morel the pressure of the water storage tank begins to rise and pushes the mechanical reversing valve to continue operating until the connection between the pure water machine and tap water is closed. Although the solution solves the problem of the pressure of pure water in the case that a water storage tank is provided, and it does not require a booster pump, the reversing valve in the solution integrates complex functions and has excessive internal friction, and thus has lowered its reliability, and it cannot work normally in the case of low municipal water supply pressure.In view of the above, the existing reverse osmosis pure water machines having pressure water storage tanks or having no tank have defects in design; and the aforementioned problem can be resolved by a novel reversing valve in the present invention.US 3,625,246relates to a nonbleed high-pressure positioner. The positioner actuates a pipeline control valve, utilizing a full pressure of the pipeline for its operation. It is constructed to minimize bleeding and waste of pipeline fluid in normal condition. Automatic operation depends entirely upon pressure differentials in the pipeline system.US 5,992,449relates to a safety relief valve having a diaphragm actuator including a diaphragm with a dome chamber on one side of the diaphragm and an underdome chamber on an opposed side of the diaphragm. A diaphragm operated pilot control valve has a valve body with a pilot sensing port, a pilot dome port, and a pilot underdome port in fluid communication with a pilot valve chamber. A slidable pilot valve member connected to diaphragm is mounted for movement between two pairs of opposed annular seats. Actuation of pilot valve member at a low set pressure permits fluid communication of inlet fluid from pressure vessel to underdome chamber and exhaust of fluid from dome chamber to boost opening of main relief valve member.US 2009/178713 A1relates to a valve positioner for controlling a valve closure element. The positioner includes a positioner housing with a plurality of fluid flow passageways in fluid communication with a fluid supply source and the valve closure element. The positioner housing is configured to receive a detachable spool manifoldassembly. The spool manifold assembly is positioned adjacent the plurality of fluid flow passageways. The spool manifold assembly includes a reciprocally moveable spool configured to selectively port fluid flow from the plurality of fluid flow passageways. The spool manifold assembly includes a diaphragm connected to the spool via a flexible shaft. The diaphragm is in fluid communication with a transducer for receiving a fluid causing the diaphragm to expand or contract and thereby displacing the spool. The flexible shaft is radially elastic in order to minimize axial backlash between the diaphragm and the spool. The flexible shaft configuration minimizes the spool stroke.US 3,561,489relates to a fluid-operated, in particular a hydraulically or pneumatically controllable slide valve arrangement for alternately communicating in flow relationship an outflow conduit with a pressure conduit and return flow conduit of a fluid-operating system. This slide valve arrangement comprises a slide valve housing equipped with the aforesaid outflow, pressure and return flow conduits, and a sleeve valve or slide valve piston member is disposed in such slide valve housing. A respective coaxially extending displacement piston member acts upon each end face of the sleeve valve member, the effective cross-sectional area of both displacement piston members differing from one another. Additionally, there is provided fluid-operated control circuit means for continually applying a predetermined control pressure of a fluid medium to the displacement piston member possessing the smaller effective cross- sectional area and for alternately applying the control pressure of the fluid medium of the control circuit means and a considerably smaller pressure to the other displacement piston member possessing the larger effective cross-sectional area.US 2005/098755 A1relates to a check valve arrangement for a hydraulic consumer which permits connecting the hydraulic consumer selectively to a medium pressure line or a high-pressure line. The valve arrangement comprises a medium pressure switching valve, a high-pressure switching valve, and a check valve downstream of these valves. The check valve is constructed as a combined sliding and seat valve and comprises control surfaces for the medium pressure, the high pressure, and the pressure applied to a consumer line, i.e., the pressure applied to the hydraulic consumer. The control surfaces are dimensioned such that a connection of the hydraulic consumer to the high-pressure line can occur only when a predetermined limit pressure is reached in the hydraulic consumer.US 2016/169402 A1relates to a valve, in particular proportional pressureregulating valve, having a valve piston which is guided in longitudinally movable fashion in a valve housing and which can be actuated by means of an operation device, wherein the valve housing has multiple fluid ports and wherein, in one movement position of the valve piston, a fluid-conducting connection is produced between a pressure supply port and a working port, and in another movement position, a further fluid-conducting connection is produced between the working port and a tank port, is distinguished by the fact that the respective pressure difference that arises between the working port and the tank port as flow passes through the further fluid-conducting connection acts, by way of an actuation device, on the valve piston such that the latter passes from a stop position, proceeding from which the further fluid-conducting connection is substantially shut off, into a fully open opening position, in which, in relation to the stop position, an enlarged opening cross section from working port to tank port is realized.SUMMARYOne objective of the present invention is to provide a reversing valve, comprising: a valve body, having a cylindrical or approximately cylindrical valve element disposed therein, wherein the valve element has a first end surface and a second end surface opposite to the first end surface; a piston seat, disposed on the first end surface side of the valve element and having at least a portion in contact with the valve body, wherein a piston is disposed in the piston seat; a diaphragm end cover, disposed on one side of the piston seat opposite to the valve body; a piston diaphragm, fixed to the diaphragm end cover and disposed between the diaphragm end cover and the piston seat, and disposed between the piston and the piston seat, so that the piston has no direct contact with the piston seat; and a spring housing, disposed on the second end surface side of the valve element and having at least a part in contact with the valve body, wherein a compression spring is disposed in the spring housing and the compression spring is disposed to be in contact with the second end surface of the valve element, wherein centers of the piston diaphragm, the piston, the valve element, and the compression spring are on the same axis.Another objective of the present invention is to provide a household water purifier, comprising: a reverse osmosis membrane filter element, including a water inlet, a purewater outlet, and a non-pure water outlet, wherein the water inlet is used for receiving water to be treated; a first one-way valve, having a water inlet communicating with the pure water outlet of the reverse osmosis membrane filter element through awaterway; a second one-way valve, having a water inlet communicating with a water outlet of the first one-way valve through a waterway and having a water outlet communicating with a water inlet of a tap through a waterway; a water storage tank, including a first cavity and a second cavity isolated by a waterproof film, wherein total capacities of the two cavities are fixed, and the capacity of the first cavity decreases as the capacity of the second cavity increases or the capacity of the first cavity increases as the capacity of the second cavity decreases; the first cavity is used for accommodating pure water from the pure water outlet of the reverse osmosis membrane filter element and communicates with the water outlet of the first one-way valve and the water inlet of the second one-way valve through a waterway, and the second cavity is used for accommodating non-pure water from the non-pure water outlet of the reverse osmosis membrane filter element; a switching device, used for connecting or disconnecting a waterway to the water inlet of the reverse osmosis membrane filter element according to a change in pressure of the first cavity of the water storage tank; and the reversing valve, wherein the first channel of the reversing valve communicates with the water inlet of the tap through a waterway, the fourth channel of the reversing valve communicates with the non-pure water outlet of the reverse osmosis membrane filter element through a waterway, the second channel of the reversing valve communicates with a drainage path through a waterway, the third channel of the reversing valve communicates with the second cavity of the water storage tank through a waterway, the reversing valve is used for connecting the fourth channel to the third channel and meanwhile disconnecting the second channel from the third channel according to a change in water pressure acting on the piston through the first channel, or disconnecting the fourth channel from the third channel and meanwhile connecting the second channel to the third channel according to a change in water pressure acting on the piston through the first channel.The reversing valve according to the present invention is applicable to a filtering apparatus, and particularly to a water purification system, especially a household water purifier.BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1is a schematic overall view of a water purifier having a reversing valve according to an embodiment of the present invention;FIG. 2is an exploded view of a reversing valve 500 according to the embodiment of the present invention;FIG. 3is a schematic view of a portion obtained after half of the reversing valve according to the embodiment of the present invention is removed along an axis thereof;FIG. 4is a schematic sectional view of main parts of the reversing valve 500 according to the embodiment of the present invention;FIG. 5is a schematic view of a core part, a valve element 5060, of the reversing valve 500 according to the embodiment of the present invention;FIG. 6is a schematic view illustrating a state of the reversing valve 500 according to the embodiment of the present invention when a tap 600 is turned on;FIG. 7is a schematic view illustrating an instantaneous state of the reversing valve 500 according to the embodiment of the present invention converted from a water intaking mode to water replenishing after the tap 600 is turned off;FIG. 8is a schematic view illustrating a state of the reversing valve 500 according to the embodiment of the present invention when water is replenished and water is full after the tap 600 is turned off;FIG. 9is a schematic view illustrating spring pre-tensioning adjustment of the reversing valve 500 according to the embodiment of the present invention; andFIG. 10is a schematic view illustrating exhausting of the reversing valve 500 according to the embodiment of the present invention during motion.DETAILED DESCRIPTION OF THE EMBODIMENTSIn order to make those skilled in the art to better understand the technical solution of the present invention, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.FIG. 1is a schematic overall view of a water purifier having a reversing valve according to an embodiment of the present invention. As shown inFIG. 1, the household water purifier according to the embodiment of the present invention consists of a pre-filter 100 (optional), an automatic stop valve 103, a reverse osmosis membrane filter element 200, a throttling device 201 (optional), one-way valves 202 and 301, a post-filter element 300 (optional), a water storage tank 400, and a reversing valve 500.The pre-filter 100 is optional in the household water purifier according to the present invention and is provided with a water inlet and a water outlet; tap water is connected to the water inlet of the pre-filter 100, and the water outlet of the pre-filter 100 is connected to a water inlet 1031 of the automatic stop valve 103.The automatic stop valve 103 is connected to three waterways: the water inlet of the automatic stop valve 103 is 1031 and is connected to the water outlet of the pre-filter 100; a water outlet of the automatic stop valve 103 is 1032 and is connected to a water inlet of a lower-level filter element; and a switching waterway of the automatic stop valve 103 is 1033 and is connected to a pure water storage cavity 4001 of the water storage tank 400.The reverse osmosis membrane filter element 200 is connected to three waterways: a water inlet 2001 of the reverse osmosis membrane filter element 200 is connected to the water outlet 1032 of the automatic stop valve 103; a concentrated water port (namely, a non-pure water outlet) 2002 of the reverse osmosis membrane filter element 200 is connected to a water inlet of the throttling device 201; and a pure water outlet 2003 of the reverse osmosis membrane filter element 200 is connected to a water inlet of the one-way valve 202. Those skilled in the art know that although the concentrated water port 2002 of the reverse osmosis membrane filter element 200 is connected to the water inlet of the throttling device 201 inFIG. 1, the present invention is not limited thereto. In practice, the throttling device 201 itself is optional.As shown inFIG. 1, the throttling device 201 is provided with a water inlet and a water outlet; and specifically, the water inlet is connected to the concentrated water outlet (namely, the non-pure water outlet) 2002 of the reverse osmosis membrane 200, and the water outlet is connected to a water inlet of a drainage component 203.The water storage tank 400 is provided with two cavities 4001 and 4002 having variable capacities, the cavity 4001 is connected to a water outlet of the one-way valve 202 and is used for accommodating pure water from the pure water outlet of the reverse osmosis membrane filter element 200, and the cavity 4002 is connected to a channel 5004 of the reversing valve 500 andis used for accommodating non-pure water from the concentrated water outlet 2002 of the reverse osmosis membrane filter element 200.A connection point 4003 is used for connecting the switching waterway 1033 of the automatic stop valve 103, the pure water cavity 4001 of the water storage tank 400, the wateroutlet of the one-way valve 202, and a water inlet of the post-filter element 300 (optional).In the case that the post-filter element 300 is provided, the post-filter element 300 is provided with a water inlet and a water outlet, the water inlet of the post-filter element 300 is connected to the connection point 4003, the water outlet of the post-filter element 300 is connected to the water inlet of the one-way valve 301, and the water outlet of the one-way valve 301 is connected to 5005 near a water inlet of a tap 600.The reversing valve 500 is connected to four waterways. Specifically, as shown inFIG. 1, the channel 5004 of the reversing valve 500 is connected to the cavity 4002 of the water storage tank and is used for controlling pressure switching of the cavity 4002; a channel 5002 of the reversing valve 500 is connected to the concentrated water outlet (namely, the non-pure water outlet) 2002 of the reverse osmosis membrane filter element 200, and a connection point 2004thereof is located between the non-pure water outlet 2002 and the water inlet of the throttling device (for example, a throttling valve) 201; a channel 5003 of the reversing valve 500 is connected to the water outlet of the throttling device 201, and a connection point 2005 thereof is located between the water outlet of the throttling device 201 and the water inlet of the drainage component 203; a channel 5001 of the reversing valve 500 is connected to the water inlet 6001 of the tap 600, and a connection point 5005 thereof is located between the water inlet 6001 and the water outlet of the post-filter element 300.FIG. 2is an exploded view of the reversing valve 500 according to the embodiment of the present invention.FIG. 3is a schematic view of a portion obtained after half of the reversing valve according to the embodiment of the present invention is removed along an axis thereof.FIG. 4is a schematic sectional view of main parts of the reversing valve 500 according to the embodiment of the present invention. As shown inFIG. 2,FIG. 3, andFIG. 4, the reversing valve 500 mainly includes portions such as a valve element 5060, a piston 5040, a piston diaphragm 5020, a compression spring 5080, a valve body 5050, a piston seat 5030, a diaphragm end cover 5010, and a spring housing 5070. The valve element 5060, the piston 5040, the valve body 5050, the piston seat 5030, the spring housing 5070, and the diaphragm end cover 5010 may be made of plastic, metal or other rigid materials having a certain rigidity. The piston diaphragm 5020 may be made of an elastic material having desirable sealing properties.The valve body 5050, the piston seat 5030, the diaphragm end cover 5010, and the spring housing 5070 are fixed together in a certain connection mode, and the connection modemay be bolt and nut fasteners, threaded connections, or welding. Without being limited to the aforementioned manner, the piston seat 5030 and the valve body 5050 may be integrally formed, or the valve body 5050 and the spring housing 5070 may be integrally formed, or the piston seat 5030, the valve body 5050, and the spring housing 5070 may be integrally formed. At this time, the separate portions (including the aforementioned integrally formed portions) are also connected together by the aforementioned bolt and nut fasteners, threaded connections, or welding.As shown inFIG. 4, the piston seat 5030 is provided with a hollow chamber therein used for carrying the piston 5040. The piston diaphragm 5020 is fixed to the diaphragm end cover 5010 and is disposed between the diaphragm end cover 5010 and the piston seat 5030 and disposed between the piston 5040 and the piston seat 5030, so that the piston 5040 has no direct contact with the piston seat 5030. Moreover, the diaphragm end cover 5010 and the piston diaphragm 5020 form one cavity 5011 in the diaphragm end cover 5010, the cavity 5011 communicates with the exterior of the reversing valve 500 through the channel 5001, and in the present invention, the cavity 5011 is connected to the connection point 5005 near the water inlet of the tap 600 inFIG. 1through the channel 5001. On the other hand, as shown inFIG. 3andFIG. 4, the piston diaphragm 5020 is tightly attached to end surfaces and a cylindrical side surface of the piston 5040 to ensure that the pressure in the cavity 5011 can be transferred to the surface of the piston 5040 through the piston diaphragm 5020. Because the piston 5040 and the piston seat 5030 are separated by the piston diaphragm 5020, there is no direct contact between the piston 5040 and the piston seat 5030 during relative movement of the piston 5040 and the piston seat 5030, and thus the frictional resistance is small and smooth and rapid displacement can be achieved.Similarly, as shown inFIG. 4, the valve body 5050 is also provided with a hollow portion used for carrying the valve element 5060. InFIG. 4, the main body of the valve element 5060 has the shape of a cylinder or approximate cylinder, and the cylinder is preferably a hollow structure provided with a duct 5061 connecting two end surfaces of the valve element 5060. A contact and seal between the valve element 5060 and the valve body 5050 is achieved by four seal rings disposed at corresponding positions in the valve body 5050, and specifically, as shown inFIG. 3andFIG. 4, a seal ring 5021, a seal ring 5022, a seal ring 5023, and a seal ring 5024 are respectively disposed in corresponding recesses inside the valve body 5050 in a direction from one side of the valve element 5060 close to the piston to one side of the valve element 5060 close to the spring. The seal rings 5021-5024 may be made of an elastic material having desirablesealing properties. The valve element 5060, the valve body 5050, the seal ring 5021, and the seal ring 5022 form one cavity 5051, the cavity 5051 communicates with the exterior of the reversing valve 500 through the channel 5003, and in the present invention, the cavity 5051 is connected to the node 2005 of the drainage component of the water purifier inFIG. 1through the channel 5003. Further, the valve element 5060, the valve body 5050, the seal ring 5022, and the seal ring 5023 form another cavity 5052, the cavity 5052 communicates with the exterior of the reversing valve 500 through the channel 5004, and in the present invention, the cavity 5052 is connected to the cavity of the water storage tank 4002 of the water purifier inFIG. 1through the channel 5004. Furthermore, the valve element 5060, the valve body 5050, the seal ring 5023, and the seal ring 5024 form another cavity 5053, the cavity 5053 communicates with the exterior of the reversing valve 500 through the channel 5002, and in the present invention, the cavity 5053 is connected to the concentrated water outlet (namely, the non-pure water outlet) 2002 of the reverse osmosis membrane filter element 200 of the water purifier inFIG. 1through the channel 5002.Still as shown inFIG. 4, two depressed portions 5064 and 5063 are disposed on the cylindrical surface of the main body of the valve element 5060. As shown inFIG. 5, each of the depressed portions 5064 and 5063 consists of a group of recesses distributed around an axis of the valve element 5060 on the surface of the valve element 5060. Those skilled in the art will understand that the details such as the geometrical shape, the length, the width, and the number of the recesses may be determined according to sizes of other constituent parts of the mechanical reversing valve 500 such as the valve body 5050 and the valve element 5060 and the specific application, and will not be described herein again. When one of the depressed portions 5064 and 5063 spatially overlaps one of the seal rings 5022 and 5023, cavities on two sides of the seal ring spatially overlapping the depressed portion can be connected; when the non-depressed cylindrical surface spatially overlaps one of the seal rings, cavities on two sides of the seal ring spatially overlapping the non-depressed portion are isolated and cannot be connected. Moreover, when the valve element 5060 is a hollow structure and is provided with a duct, namely, the central channel 5061 thereof, neither of the depressed portions 5064 and 5063 communicates with the duct of the valve element 5060. Further, it should be noted that according to the present invention, the depressed portions 5064 and 5063 are designed to spatially overlap the seal rings 5022 and 5023 only. More specifically, they are designed in such a manner that the depressed portion 5064 can spatially overlap the seal ring 5022 only, and when the depressed portion 5063 can spatially overlap the seal ring 5023 only. Moreover,when the depressed portion 5064 spatially overlaps the seal ring 5022, the depressed portion 5063 does not make contact with the seal ring 5022. The reverse is also true. In other words, the cavity 5051 communicates with the cavity 5052 or the cavity 5052 communicates with the cavity 5053, but the cavity 5051, the cavity 5052, and the cavity 5053 do not communicate with each other at the same time.The piston 5040 is installed on one end surface of the valve element 5060. For example, the piston 5040 may be installed on the end surface of the valve element 5060 with an extended piston rod thereof in contact with the end surface. However, without being limited to this form, as shown inFIG. 4, in the case that the valve element 5060 is a hollow structure and is provided with the duct 5061, in order to prevent the piston 5040 from moving on the end surface of the valve element 5060, and in consideration of using the duct 5061 in the valve element 5060 for exhausting, a design that the piston rod of the piston 5040 extends into the duct 5061 of the valve element 5060 is adopted. In the embodiment shown inFIG. 4, the piston 5040 is installed on the left end surface of the valve element 5060, but those skilled in the art should understand that the embodiments of the present invention are not limited thereto.As shown inFIG. 4, the spring housing 5070 is also provided with a hollow chamber therein used for carrying the compression spring 5080. The other end surface (the right end surface shown inFIG. 4) of the valve element 5060 makes contact with one end of the compression spring 5080, the other end surface (the right end surface shown inFIG. 4) of the compression spring 5080 is restricted in position to a spring pre-tensioning adjusting bolt 5082 by a spring seat 5081, and the spring pre-tensioning adjusting bolt 5082 is installed on the spring housing 5070. Certainly, those skilled in the art should understand that the embodiments of the present invention are not limited thereto. For example, in another embodiment of the present invention, the spring seat 5081 may be omitted, and the other end surface of the compression spring is disposed to be connected to the spring pre-tensioning adjusting bolt 5082, and the spring pre-tensioning bolt 5082 is installed on the spring housing 5070. In still another embodiment of the present invention, further, the spring pre-tensioning bolt 5082 may be omitted, and the compression spring 5080 is directly installed on the spring housing. However, in consideration of fluctuations in an elastic coefficient of the spring 5080 during mass production of the reversing valve 500 or possible attenuation of the elastic coefficient of the spring 5060 during actual use, if a spring pre-tensioning force adjustment function is provided for the reversing valve 500, as shown inFIG. 9 (FIG. 9is a schematic view illustrating spring pre-tensioning adjustment of the reversing valve 500 according to the embodiment ofthe present invention), that is, if the spring pre-tensioning bolt 5082 is provided, the position of the spring seat 5081 or the spring 5080 can be adjusted by turning the bolt 5082, so as to adjusta pre-tensioning force of the spring 5080 according to actual application requirements. Therefore, the spring pre-tensioning bolt 5082 is preferably provided in the reversing valve 500.It should be noted that in the present invention, as shown in the above embodiment, the piston diaphragm 5020, the piston 5040, the valve element 5060, and the spring 5080 must be disposed to be coaxial. Moreover, the piston diaphragm 5020, the piston 5040, and the valve element 5060 are preferably axially symmetrical parts.The operation of the reversing valve 500 is controlled by the pressure acting on the piston thereof through the channel 5001.FIG. 6is a schematic view illustrating a state of the reversing valve 500 according to the embodiment of the present invention when the tap 600 is turned on. As shown inFIG. 1andFIG. 6, when the tap 600 is turned on, the waterway pressure of the channel 5001 attenuates, the water pressure acting on the piston diaphragm 5020 inside the reversing valve 500 drops, and the pressure on the piston side of the valve element 5060 is smaller than the pressure on the spring side, so the compression spring 5080 is stretched to push the valve element 5060 to move rapidly toward the piston side, during which since the valve element 5060 moves toward the piston side till it reaches at a predetermined position where the piston is stopped by the diaphragm end cover, as shown inFIG. 6, the seal ring 5023 spatially overlaps the depressed portion 5063 on the surface of the valve element 5060 and the cavity 5052 communicates with the cavity 5053; the depressed portion 5064 of the valve element is located between the seal rings 5021 and 5022, and thus the cavity 5051 is completely isolated and does not communicate with other cavities inside the valve body.Because the cavity 5052 and the cavity 5053 are connected by the depressed portion 5063 on the surface of the valve element, the channel 5004 and the channel 5002 of the reversing valve 500 are connected; and because the cavity 5051 is completely isolated and does not communicate with other cavities inside the valve body, the connection between the channel 5004 and the channel 5003 of the reversing valve 500 is cut off. At this time, the pressure of the cavity 4001 in the water storage tank 400 is also released through the connection point 4003, the post-filter element 300, the one-way valve 301,and the tap 600, the water inlet 1031 of the automatic stop valve 103 communicates with the water outlet 1032, the pressure of tap water enters a pipeline of the water purifier through the water inlet of the pre-filter 100, passes through a filter element 101, the water outlet 1032 of the automatic stop valve 103, the water inlet 2001 of the reverse osmosis membrane filter element 200, the concentrated water outlet 2002, the connection point 2004, and the channel 5002 of the reversing valve 500, then is connected to the channel 5004 of the reversing valve 500, and finally enters the cavity 4002 of the water storage tank 400 and pushes pure water in the cavity 4001 to pass through the connection point 4003, the post-filter element 300, and the one-way valve 301, and finally flow out of the tap 600.As shown inFIG. 1, when the tap 600 is turned off, because the mechanical automatic stop valve 103 is in an open state at this time, the pressure of the tap water causes the pressure of the channel 5001 of the reversing valve 500 to rise rapidly in a short time.FIG. 7is a schematic view illustrating an instantaneous state of the reversing valve 500 according to the embodiment of the present invention converted from a water intaking mode to water replenishing after the tap 600 is turned off. At this time, as shown inFIG. 7, because the water pressure in the cavity 5011 rises, the pressure on the piston side of the valve element 5060 increases, the spring 5080 is compressed, and the valve element moves rapidly toward the spring side. When the valve element 5060 moves to the position shown inFIG. 7, neither of the two depressed portions 5063 and 5064 spatially overlaps any seal ring; at this time, the cavities 5051, 5052, and 5053 inside the valve body do not communicate with each other, and therefore, the channels 5003, 5004, and 5002 do not communicate with each other.When the reversing valve 500 is in the state shown inFIG. 7, because the mechanical automatic stop valve 103 is in the open state at this time and the pressure of the tap water still acts on the inside of the reverse osmosis membrane filter element 200 in the water purifier system inFIG. 1, pure water continues entering the cavity between the outlet 2003 of the reverse osmosis membrane filter element 200 and the water inlet 6001 of the tap through a reverse osmosis membrane. Because the channels 5003, 5004, and 5002 of the reversing valve 500 do not communicate with each other at this time, the cavity 4002 of the water storage tank 400 is in a state of being isolated from the outside, pure water newly entering the downstream of the reverse osmosis membrane filter element 200 causes the pressure of the cavity between the outlet 2003 and the water inlet 6001 of the tap to rise rapidly, the pressure of the channel 5001 of the reversing valve 500 also rises accordingly, and the valve element 5060 of the reversing valve 500 shown inFIG. 7is pushed to continue moving towardthe spring side.On the basis of the state inFIG. 7, as the valve element 5060 continues moving toward the spring side, since the valve element 5060 moves to a predetermined position toward the spring side till the valve element 5060 moves to a position at which the piston 5040 is restricted in movement by the piston seat 5030 (that is, stopped by the piston seat 5030), the seal ring 5022 spatially overlaps the depressed portion 5064 as shown inFIG. 8. At this time, the cavity 5051 communicates with the cavity 5052; the depressed portion 5063 of the valve element is located between the seal rings 5023 and 5024, and therefore, the cavity 5053 is completely isolated and does not communicate with other cavities inside the valve body.Because the cavity 5051 communicates with the cavity 5052, the channel 5004 communicates with the channel 5003; as shown inFIG. 1, because the channel 5003 is connected to the drainage component, the pressure of the cavity 4002 of the water storage tank 400 is released in a short time, and meanwhile, the pressure in the pipeline on the cavity 4001 and the connection point 4003 is also released rapidly; at this time, the pressure in the pipeline between the water outlet of the one-way valve 301 and the tap 600 is maintained at a certain value due to the protection of the one-way valve 301, so as to maintain the valve element 5060 of the reversing valve 500 at a certain position through the channel 5001, and ensure that the channels 5004 and 5003 are connected and the connection between the channels 5004 and 5002 is cut off.Afterwards, because the control waterway 1033 of the mechanical automatic stop valve 103 is connected to the connection point 4003 under a low pressure, the water inlet 1031 and 1032 of the stop valve are always connected, and the reverse osmosis membrane filter element 200 begins to produce pure water under the action of the pressure; the pure water gradually enters the pure water cavity 4001 of the water storage tank 400 through the water outlet 2003, the one-way valve 202, and the connection point 4003; original water in the cavity 4002 gradually drains through the channel 5004 and the channel 5003 under pressing of the cavity 4001; in the process that the pure water cavity 4001 of the water storage tank 400 gradually increases, the pressure in the pipeline of the connection point 4003 always has an extremely low value so as to ensure that the pressure of the tap water can fully act on the reverse osmosis membrane filter element 200, thereby ensuring enough pure water production flow.When the pure water cavity 4001 of the water storage tank 400 is completely filled up and the cavity 4002 is completely drained, the pure water storage amount in the waterstorage tank 400 cannot be further increased, and driven by the pressure of the tap water, the pressure in the water storage tank 400 begins to gradually rise and the pressure in the pipeline of the connection point 4003 also begins to rise; when the pressure value is greater than the downstream pressure of the one-way valve 301, the ever rising pressure pushes the one-way valve 301 open and enters the channel 5001. As shown inFIG. 8, the pressure on the surface of the piston continues rising and pushes the valve element 5060 to continue moving toward the spring side till the piston is restricted in movement by the piston seat, and at this time, the valve element 5060 stops moving.After the pressure in the water storage tank 400 rises to a certain value, the waterway 1033 drives the automatic stop valve to close the water inlet 1031 and the water outlet 1032, and the entire water purifier stops working.In addition, the problems of suction and exhausting caused by the change in volume of the cavity need to be considered during reciprocating motion of the reversing valve 500.FIG. 10is a schematic view illustrating exhausting of the reversing valve 500 according to the embodiment of the present invention during motion. As shown inFIG. 10, two ends of the valve element 5060 of the reversing valve are separately provided with one cavity for solving the problems of suction and exhausting, and the cavities are respectively a cavity 5041 and a cavity 5062.The cavity 5041 is located at the piston side of the valve element 5060 and is formed by the piston diaphragm 5020, the valve element 5060, and the piston seat 5030. When the valve element 5060 moves toward the piston side, the volume of the cavity 5041 increases; when the valve element 5060 moves toward the spring side, the volume of the cavity 5041 decreases.The cavity 5062 is located at the spring side of the valve element 5060 and is formed by the valve body 5050, the valve element 5060, and the spring housing 5070. When the valve element 5060 moves toward the piston side, the volume of the cavity 5062 increases; when the valve element 5060 moves toward the spring side, the volume of the cavity 5062 decreases.As shown inFIG. 10, the center of the valve element 5060 is provided with a duct (or called a channel) 5061 connecting the cavities 5041 and 5062, and when the valve element 5060 moves in a reciprocating manner, because the volumes of the cavities 5041 and 5062 on the two sides increase or decrease by an equal value, the central channel 5061 enables internalcirculation of air of the two cavities without the need of adding flow channels of the two cavities for air outside the reversing valve 500.However, in consideration of possible changes in air volume of the cavity caused by temperature changes, as shown inFIG. 10, the reversing valve 500 is provided with a ventilation channel 5031 between the internal cavity and the outside. The channel 5031 communicates with the cavity 5041 through a gap between the valve element 5060 and the piston seat 5030. Because the channel 5031 is provided with a bend, external foreign matters can be effectively prevented from entering the reversing valve 500 while ensuring free circulation of air, thereby avoiding a dysfunction caused by entry of foreign matters.In the aforementioned novel water purifier, a mechanical automatic reversing valve is applied, original compressed air in a water storage tank is eliminated, there is no back pressure in production of pure water of the water purifier, and therefore, a booster pump and electric power are not required, and the fault rate and safety risk of the water purifier are greatly reduced.When it is required to take water through a tap, the mechanical automatic reversing valve introduces the pressure of tap water into the water storage tank, pure water in the water storage tank is forced out through the pressure of the tap water, and the flow is always stable without the influence of air pressure attenuation of a conventional water storage tank or the influence of water temperature changes of a pure water machine without a water storage tank throughout the year.It can be understood that the aforementioned embodiments are only exemplified embodiments adopted for describing the principle of the present invention; however, the present invention is not limited thereto. Those skilled in the art can make various transformations and improvements on the conditions of not departing from the scope of the present invention which is solely defined by the appended claims. See more
Claims
A reversing valve (500), comprising:a valve body (5050), having a cylindrical or approximately cylindrical valve element (5060) disposed therein, wherein the valve element (5060) has a first end surface and a second end surface opposite to the first end surface;a piston seat (5030), disposed on the first end surface side of the valve element (5060) and having at least a portion in contact with the valve body (5050), wherein an axially movable piston (5040) is disposed in the piston seat (5030);a diaphragm end cover (5010), disposed on one side of the piston seat (5030) opposite to the valve body (5050);a piston diaphragm (5020), fixed to the diaphragm end cover (5010) and disposed between the diaphragm end cover (5010) and the piston seat (5030), and disposed between the piston (5040) and the piston seat (5030), the piston (5040) and the piston seat (5030) being separated by the diaphragm (5020) so that the piston (5040) has no direct contact with the piston seat (5030) during axial movement of the piston (5040); anda spring housing (5070), disposed on the second end surface side of the valve element (5060) and having at least a portion in contact with the valve body (5050), wherein a compression spring (5080) is disposed in the spring housing (5070) and the compression spring (5080) is disposed to be in contact with the second end surface of the valve element (5060),wherein the piston diaphragm (5020), the piston (5040), the valve element (5060), and the compression spring (5080) are disposed to be coaxial and movable axially; and whereinthe piston diaphragm (5020) and the diaphragm end cover (5010) jointly form a first cavity (5011) in the diaphragm end cover (5010), and the first cavity communicates with theexterior of the reversing valve (500) through a first channel (5001);a first seal ring (5021), a second seal ring (5022), a third seal ring (5023), and a fourth seal ring (5024) are sequentially disposed at different predetermined positions within the valve body (5050) in a direction from the first end surface to the second end surface; wherein the valve body (5050), the valve element (5060), the first seal ring (5021), and the second seal ring (5022) jointly form a second cavity (5051) in the valve body (5050); the second cavity (5051) communicates with the exterior of the reversing valve (500) through a second channel (5003); the valvebody (5050), the valve element (5060), the second seal ring (5022), and the third seal ring (5023) jointly form a third cavity (5052) in the valve body (5050); the third cavity (5052) communicates with the exterior of the reversing valve (500) through a third channel (5004); the valve body (5050), the valve element (5060), the third seal ring (5023), and the fourth seal ring (5024) jointly form a fourth cavity (5053) in the valve body (5050), and the fourth cavity (5053) communicates with the exterior of the reversing valve (500) through a fourth channel (5002);a first depressed portion (5064) and a second depressed portion (5063) are sequentially disposed on a cylindrical surface of the valve element (5060) in the direction from the first end surface to the second end surface, wherein the second depressed portion (5063) is spaced apart from the first depressed portion (5064) by a predetermined distance in an axial direction of the cylindrical surface of the valve element (5060); whereinwhen the valve element (5060) moves to a position where the first depressed portion (5064) spatially overlaps with the second seal ring (5022), the second cavity (5051) communicates with the third cavity (5052);characterized in thatthe valve body (5050) makes contact with the valve element (5060) by the first to fourth seal rings (5021, 5022, 5023, 5024), andin thatwhen the valve element (5060) moves to a position where the second depressed portion (5063) spatially overlaps with the third seal ring (5023), the third cavity (5052) communicates with the fourth cavity (5053).The reversing valve according to claim 1, whereinthe valve element (5060) is hollow and has a duct (5061) disposed therein and connects the first and second end surfaces thereof.The reversing valve according to claim 1, whereinthe diaphragm end cover (5010), the piston seat (5030), the valve body (5050), and the spring housing (5070) are fixed together by bolt and nut fasteners, threaded connections, or welding.The reversing valve according to claim 1, whereinthe piston seat (5030), the valve body (5050), and the spring housing (5070) are integrally formed, and the diaphragm end cover (5010) and the integrally formed portion are fixed together by bolt and nut fasteners, threaded connections, or welding.The reversing valve according to claim 1, whereinthe valve body (5050) and the piston seat (5030) are integrally formed, and the diaphragm end cover (5010), the integrally formed portion, and the spring housing (5070) are fixed together by bolt and nut fasteners, threaded connections, or welding.The reversing valve according to claim 1, whereinthe valve body (5050) and the spring housing (5070) are integrally formed, and the diaphragm endcover (5010), the piston seat (5030), and the integrally formed portion are fixed together by bolt and nut fasteners, threaded connections, or welding.The reversing valve according to claim 2, whereineach of the first depressed portion (5064) and the second depressed portion (5063) consists of a group of recesses distributed around an axis of the valve element (5060) on the surface of the valve element (5060) and spaced apart from one another, and none of the recesses communicates with the duct (5061)- of the valve element (5060).The reversing valve according to claim 2, whereina portion of the piston (5040) extends into the duct (5061) of the valve element (5060).The reversing valve according to claim 1, whereinwhen a pressure acting on the piston diaphragm (5020) through the first channel (5001) decreases, the valve element (5060), being pushed by the compression spring (5080), moves toward a piston side till it reaches a first predetermined position, and from this point till the valve element (5060) moves to a second predetermined position where the piston (5040) is stopped by the diaphragm end cover (5010), the second depressed portion (5063) spatially overlaps the third seal ring (5023) so that the third cavity (5052) communicates with the fourth cavity (5053), and the first depressed portion (5064) is located between the first seal ring (5021) and the second seal ring (5022), and the first depressed portion (5064) does not spatially overlap with either of the two seal rings.The reversing valve according to claim 1, whereinwhen a pressure acting on the piston diaphragm (5020) through the first channel (5001) increases so that the valve element (5060) moves toward a compression spring side and the amount of movement of the valve element (5060) is within a predetermined range, the first depressed portion (5064) is located between the first seal ring (5021) and the second seal ring (5022), and the first depressed portion (5064) does not spatially overlap with either of the two seal rings, and the second depressed portion (5063) islocated between the third seal ring (5023) and the fourth seal ring (5024), and the second depressed portion (5063) does not spatially overlap with either of the two seal rings.The reversing valve according to claim 10, whereinwhen the pressure acting on the piston diaphragm (5020) through the first channel (5001) continues increasing, the valve element (5060) continues to move toward the compression spring side till it reaches a third predetermined position, and from this point till the valve element (5060) continues to move to a fourth predetermined position where the piston (5040) is stopped by the piston seat (5030), the first depressed portion (5064) spatially overlaps the second seal ring (5022) so that the second cavity (5051) communicates with the third cavity (5052), and the second depressed portion (5063) is located between the third seal ring (5023) and the fourth seal ring (5024), and the second depressed portion (5063) does not spatially overlap either of the two seal rings.The reversing valve according to claim 1, whereinthe first depressed portion (5064) is designed to spatially overlap the second seal ring (5022) only, the second depressed portion (5063) is designed to spatially overlap the third seal ring (5023) only, and the spatial overlap between the first depressed portion (5064) and the second seal ring (5022) does not coexist with the spatial overlap between the second depressed portion (5063) and the third seal ring (5023).The reversing valve according to claim 2, whereinthe reversing valve further comprises a piston-side cavity (5041) located at a piston side, the piston-side cavity (5041) is formed jointly by the piston diaphragm (5020), the valve element (5060), and the piston seat (5030), and the piston-side cavity (5041) communicates with the duct (5061) of the valve element (5060), and when the valve element (5060) moves toward the diaphragm end cover (5010), a volume of the piston-side cavity (5041) increases, and when the valve element (5060) moves toward the spring housing (5070), the volume of the piston-side cavity (5041) decreases.The reversing valve according to claim 13, whereinthe reversing valve further comprises a spring-side cavity (5062) located at a spring side , the spring-side cavity (5062) is formed jointly by the valve body (5050), the valve element (5060), and the spring housing (5070), and the spring-side cavity (5062) communicates with the duct (5061) ofthe valve element (5060), and when the valve element (5060) moves toward the diaphragm end cover (5010), a volume of the spring-side cavity (5062) increases, and when the valve element (5060) moves toward the spring housing (5070), the volume of the spring-side cavity (5062) decreases.The reversing valve according to claim 14, whereinwhen the valve element (5060) moves in a reciprocating manner in the valve body (5050), the increased or decreased volume values of the piston-side cavity (5041) and the spring-side cavity (5062) are the same.The reversing valve according to claim 14, whereinthe reversing valve further comprises a ventilation channel (5031) located at the piston side and communicates with the exterior of the reversing valve, and the ventilation channel (5031) communicates with the piston-side cavity through a gap between the valve element (5060) and the piston seat (5030).The reversing valve according to claim 16, whereinthe ventilation channel (5031) is bent.A household water purifier, comprising:a reverse osmosis membrane filter element (200), comprising a water inlet (2001), a pure water outlet (2003), and a non-pure water outlet (2002), wherein the water inlet (2001) is used for receiving water to be treated;a first one-way valve (202), having a water inlet communicating with the pure water outlet (2003) of the reverse osmosis membrane filter element (200) through a waterway;a second one-way valve (301), having a water inlet communicating with a water outlet of the first one-way valve through a waterway and having a water outlet communicating with a water inlet of a tap (600) through a waterway;a water storage tank (400), comprising a first cavity (4001) and a second cavity (4002) isolated and formed by a waterproof film, wherein total capacities of the two cavities are fixed, and the capacity of the first cavity (4001) decreases as the capacity of the second cavity (4002) increases or the capacity of the first cavity (4001) increases as the capacity of the second cavity (4002) decreases; the first cavity (4001) is used for accommodating pure water from the pure water outlet (2003) of the reverse osmosis membrane filter element (200) and communicates with the water outlet of the first one-wayvalve (202) and the water inlet of the second one-way valve through a waterway, and the second cavity (4002) is used for accommodating non-pure water from the non-pure water outlet (2002) of the reverse osmosis membrane filter element (200);a switching device, used for connecting or disconnecting a waterway to the water inlet (2001) of the reverse osmosis membrane filter element (200) according to a pressure change in the first cavity (4001) of the water storage tank (400); andthe reversing valve (500) according to claims 9, 10, 11, 12, wherein the first channel (5001) of the reversing valve (500) communicates with a water inlet of a tap (600) through a waterway, the fourth channel (5002) of the reversing valve (500) communicates with the non-pure water outlet (2002) of the reverse osmosis membrane filter element (200) through a waterway, the second channel (5003) of the reversing valve (500) communicates with a drainage path through a waterway, the third channel (5004) of the reversing valve (500) communicates with the second cavity (4002) of the water storage tank (400) through a waterway, the reversing valve (500) is used for connecting the fourth channel (5002) to the third channel (5004) and meanwhile disconnecting the second channel (5003) from the third channel (5004) according to a change in water pressure acting on the piston (5040) through the first channel (5001), or disconnecting the fourth channel (5002) from the third channel (5004) and meanwhile connecting the second channel (5003) to the third channel (5004) according to a change in water pressure acting on the piston (5040) through the first channel (5001).The household water purifier according to claim 18, wherein when the pressure of the first cavity (4001) of the water storage tank (400) decreases to a first threshold, the switching device connects the waterway to the water inlet (2001) of the reverse osmosis membrane filter element (200), and when the pressure of the first cavity (4001) of the water storage tank (400) increases to a second threshold, the switching device disconnects the waterway to the water inlet (2001) of the reverse osmosis membrane filter element (200), and the first threshold is less than the second threshold.The household water purifier according to claim 18, wherein when the water pressure acting on the piston (5040) through the first channel (5001) decreases to a third threshold, the reversing valve (500) connects the fourth channel (5002) to the third channel (5004), and meanwhile disconnects the second channel (5003) from the third channel (5004), and when the water pressure acting on the piston (5040) through the first channel (5001) increases to a fourth threshold, the reversing valve (500) disconnects the fourth channel (5002) from the third channel (5004) and meanwhile connects the secondchannel (5003) to the third channel (5004), and the third threshold is less than the fourth threshold.
Ein Umkehrventil (500), aufweisend:einen Ventilkörper (5050), in dem ein zylindrisches oder etwa zylindrisches Ventilelement (5060) angeordnet ist, wobei das Ventilelement (5060) eine erste Endoberfläche und eine der ersten Endoberfläche gegenüberliegende zweite Endoberfläche aufweist;einen Kolbensitz (5030), der auf der ersten Endoberflächenseite des Ventilelements (5060) angeordnet ist und zumindest einen Abschnitt in Kontakt mit dem Ventilkörper (5050) aufweist, wobei ein axial beweglicher Kolben (5040) in dem Kolbensitz (5030) angeordnet ist;eine Membran-Endabdeckung (5010), die auf einer Seite des Kolbensitzes (5030) gegenüber dem Ventilkörper (5050) angeordnet ist;eine Kolbenmembran (5020), die an der Membran-Endabdeckung (5010) befestigt und zwischen der Membran-Endabdeckung (5010) und dem Kolbensitz (5030) angeordnet ist und zwischen dem Kolben (5040) und dem Kolbensitz (5030) angeordnet ist, wobei der Kolben (5040) und der Kolbensitz (5030) durch die Membran (5020) getrennt sind, sodass der Kolben (5040) während der axialen Bewegung des Kolbens (5040) keinen direkten Kontakt mit dem Kolbensitz (5030) hat; undein Federgehäuse (5070), das auf der zweiten Endoberflächenseite des Ventilelements (5060) angeordnet ist und zumindest einen Abschnitt in Kontakt mit dem Ventilkörper (5050) aufweist, wobei eine Druckfeder (5080) in dem Federgehäuse (5070) angeordnet ist und die Druckfeder (5080) angeordnet ist, um in Kontakt mit der zweiten Endoberfläche des Ventilelements (5060) zu sein,wobei die Kolbenmembran (5020), der Kolben (5040), das Ventilelement (5060) und die Druckfeder (5080) koaxial und axial beweglich angeordnet sind; und wobei die Kolbenmembran (5020) und die Membran-Endabdeckung (5010) gemeinsam einen ersten Hohlraum (5011) in der Membran-Endabdeckung(5010) bilden und der erste Hohlraum mit dem Äußeren des Umkehrventils (500) durch einen ersten Kanal (5001) kommuniziert;ein erster Dichtungsring (5021), ein zweiter Dichtungsring (5022), ein dritter Dichtungsring (5023) und ein vierter Dichtungsring (5024) aufeinander folgend an verschiedenen vorbestimmten Positionen innerhalb des Ventilkörpers (5050) in einer Richtung von der ersten Endoberfläche zu der zweiten Endoberfläche angeordnet sind; wobei der Ventilkörper (5050), das Ventilelement (5060), der erste Dichtungsring (5021) und der zweite Dichtungsring (5022) zusammen einen zweiten Hohlraum (5051) in dem Ventilkörper (5050) bilden; der zweite Hohlraum (5051) mit dem Äußeren des Umkehrventils (500) durch einen zweiten Kanal (5003) kommuniziert; der Ventilkörper (5050), das Ventilelement (5060), der zweite Dichtungsring (5022) und der dritte Dichtungsring (5023) zusammen einen dritten Hohlraum (5052) in dem Ventilkörper (5050) bilden; der dritte Hohlraum (5052) mit dem Äußeren des Umkehrventils (500) durch einen dritten Kanal (5004) kommuniziert; der Ventilkörper (5050), das Ventilelement (5060), der dritte Dichtungsring (5023) und der vierte Dichtungsring (5024) zusammen einen vierten Hohlraum (5053) in dem Ventilkörper (5050) bilden und der vierte Hohlraum (5053) mit dem Äußeren des Umkehrventils (500) durch einen vierten Kanal (5002) kommuniziert;ein erster vertiefter Abschnitt (5064) und ein zweiter vertiefter Abschnitt (5063) aufeinander folgend auf einer zylindrischen Oberfläche des Ventilelements (5060) in der Richtung von der ersten Endoberfläche zu der zweiten Endoberfläche angeordnet sind, wobei der zweite vertiefte Abschnitt (5063) von dem ersten vertieften Abschnitt (5064) um einen vorbestimmten Abstand in einer axialen Richtung der zylindrischen Oberfläche des Ventilelements (5060) beabstandet ist; wobei, wenn sich das Ventilelement (5060) in eine Position bewegt, in der sich der erste vertiefte Abschnitt (5064) mit dem zweiten Dichtungsring (5022) räumlich überlappt, der zweite Hohlraum (5051) mit dem dritten Hohlraum (5052) kommuniziert;dadurch gekennzeichnet, dassder Ventilkörper (5050) das Ventilelement (5060) durch den ersten bis vierten Dichtungsring (5021, 5022, 5023, 5024) kontaktiert und dass,wenn sich das Ventilelement (5060) in eine Position bewegt, in der sich der zweite vertiefte Abschnitt (5063) mit dem dritten Dichtungsring (5023) räumlich überlappt, der dritte Hohlraum (5052) mit dem vierten Hohlraum (5053) kommuniziert.Das Umkehrventil nach Anspruch 1, wobeidas Ventilelement (5060) hohl ist und einen darin angeordneten Kanal (5061) aufweist und die erste und zweite Endoberfläche davon verbindet.Das Umkehrventil nach Anspruch 1, wobeidie Membran-Endabdeckung (5010), der Kolbensitz (5030), der Ventilkörper (5050) und das Federgehäuse (5070) durch Schrauben-und-Muttern-Befestigungsmittel, Gewindeverbindungen oder Schweißen aneinander befestigt sind.Das Umkehrventil nach Anspruch 1, wobeider Kolbensitz (5030), der Ventilkörper (5050) und das Federgehäuse (5070) einstückig ausgebildet sind und die Membran-Endabdeckung (5010) und der einstückig ausgebildete Abschnitt durch Schrauben-und-Muttern-Befestigungsmittel, Gewindeverbindungen oder Schweißen aneinander befestigt sind.Das Umkehrventil nach Anspruch 1, wobeider Ventilkörper (5050) und der Kolbensitz (5030) einstückig ausgebildet sind und die Membran-Endabdeckung (5010), der einstückig ausgebildete Abschnitt und das Federgehäuse (5070) durch Schrauben-und-Muttern-Befestigungen, Gewindeverbindungen oder Schweißen aneinander befestigt sind.Das Umkehrventil nach Anspruch 1, wobeider Ventilkörper (5050) und das Federgehäuse (5070) einstückig ausgebildet sind und die Membran-Endabdeckung (5010), der Kolbensitz (5030) und der einstückig ausgebildete Abschnitt durch Schrauben-und-Muttern-Befestigungsmittel, Gewindeverbindungen oder Schweißen aneinander befestigt sind.Das Umkehrventil nach Anspruch 2, wobeijeder von dem ersten vertieften Abschnitt (5064) und dem zweiten vertieften Abschnitt (5063) aus einer Gruppe von Vertiefungen besteht, die um eine Achse des Ventilelements (5060) auf der Oberfläche des Ventilelements (5060) verteilt und voneinander beabstandet sind, und keine der Vertiefungen mit dem Kanal (5061) des Ventilelements (5060) kommuniziert.Das Umkehrventil nach Anspruch 2, wobeiein Abschnitt des Kolbens (5040) in den Kanal (5061) des Ventilelements (5060) hineinragt.Das Umkehrventil nach Anspruch 1, wobeiwenn ein Druck, der durch den ersten Kanal (5001) auf die Kolbenmembran (5020) wirkt, abnimmt, sich das Ventilelement (5060), das von der Druckfeder (5080) gedrückt wird, zu einer Kolbenseite hin bewegt, bis es eine erste vorbestimmte Position erreicht, und von diesem Punkt, bis sich das Ventilelement (5060) zu einer zweiten vorbestimmten Position bewegt, in der der Kolben (5040) von der Membran-Endabdeckung (5010) angehalten wird, der zweite vertiefte Abschnitt (5063) den dritten Dichtungsring (5023) räumlich überlappt, sodass der dritte Hohlraum (5052) mit dem vierten Hohlraum (5053) kommuniziert, und der erste vertiefte Abschnitt (5064) zwischen dem ersten Dichtungsring (5021) und dem zweiten Dichtungsring (5022) angeordnet ist und sich der erste vertiefte Abschnitt (5064) nicht mit einem der beiden Dichtungsringe räumlich überlappt.Das Umkehrventil nach Anspruch 1, wobeiwenn ein Druck, der durch den ersten Kanal (5001) auf die Kolbenmembran (5020) wirkt, zunimmt, sodass sich das Ventilelement (5060) zu einer Druckfederseite hin bewegt und der Betrag der Bewegung des Ventilelements (5060) innerhalb eines vorbestimmten Bereichs liegt, der erste vertiefte Abschnitt (5064) zwischen dem ersten Dichtungsring (5021) und dem zweiten Dichtungsring (5022) angeordnet ist und sich der erste vertiefte Abschnitt (5064) nicht mit einem der beiden Dichtungsringe räumlich überlappt und der zweite vertiefte Abschnitt (5063) zwischen dem dritten Dichtungsring (5023) und dem vierten Dichtungsring (5024) angeordnet ist und sich der zweite vertiefte Abschnitt (5063) nicht mit einem der beiden Dichtungsringe räumlich überlappt.Das Umkehrventil nach Anspruch 10, wobeiwenn der durch den ersten Kanal (5001) auf die Kolbenmembran (5020) wirkende Druck weiter zunimmt, sich das Ventilelement (5060) weiter zu der Druckfederseite hin bewegt, bis es eine dritte vorbestimmte Position erreicht, und von diesem Punkt, bis sich das Ventilelement (5060) weiter in eine vierte vorbestimmte Position bewegt, in der der Kolben (5040) von dem Kolbensitz (5030) angehalten wird, der erste vertiefte Abschnitt (5064) den zweiten Dichtungsring (5022) räumlich überlappt, sodass der zweite Hohlraum (5051) mit dem dritten Hohlraum (5052) kommuniziert, und der zweite vertiefte Abschnitt (5063) zwischen dem dritten Dichtungsring (5023) und dem vierten Dichtungsring (5024) angeordnet ist und der zweite vertiefte Abschnitt (5063) keinen der beiden Dichtungsringe räumlich überlappt.Das Umkehrventil nach Anspruch 1, wobeider erste vertiefte Abschnitt (5064) so gestaltet ist, dass er nur den zweiten Dichtungsring (5022) räumlich überlappt, der zweite vertiefte Abschnitt (5063) so gestaltet ist, dass er nur den dritten Dichtungsring (5023) räumlich überlappt, und die räumliche Überlappung zwischen dem ersten vertieften Abschnitt (5064) und dem zweiten Dichtungsring (5022) nicht zusammen mit der räumlichen Überlappung zwischen dem zweiten vertieften Abschnitt (5063) und dem dritten Dichtungsring (5023) besteht.Das Umkehrventil nach Anspruch 2, wobeidas Umkehrventil ferner einen kolbenseitigen Hohlraum (5041) aufweist, der auf einer Kolbenseite angeordnet ist, der kolbenseitige Hohlraum (5041) durch die Kolbenmembran (5020), das Ventilelement (5060) und den Kolbensitz (5030) gemeinsam gebildet wird und der kolbenseitige Hohlraum (5041) mit dem Kanal (5061) des Ventilelements (5060) kommuniziert, und wenn sich das Ventilelement (5060) zu der Membran-Endabdeckung (5010) hin bewegt, ein Volumen des kolbenseitigen Hohlraums (5041) zunimmt, und wenn sich das Ventilelement (5060) zu dem Federgehäuse (5070) hin bewegt, das Volumen des kolbenseitigen Hohlraums (5041) abnimmt.Das Umkehrventil nach Anspruch 13, wobeidas Umkehrventil ferner einen federseitigen Hohlraum (5062) aufweist, der an einer Federseite angeordnet ist, wobei der federseitige Hohlraum (5062) durch den Ventilkörper (5050), das Ventilelement (5060) und das Federgehäuse (5070) gemeinsam gebildet wird und der federseitige Hohlraum (5062) mit dem Kanal (5061) des Ventilelements (5060) kommuniziert, und wenn sich das Ventilelement (5060) zu der Membran-Endabdeckung (5010) hin bewegt, ein Volumen des federseitigen Hohlraums (5062) zunimmt, und wenn sich das Ventilelement (5060) zu dem Federgehäuse (5070) hin bewegt, das Volumen des federseitigen Hohlraums (5062) abnimmt.Das Umkehrventil nach Anspruch 14, wobeiwenn sich das Ventilelement (5060) in dem Ventilkörper (5050) hin und her bewegt, die vergrößerten oder verkleinerten Volumenwerte des kolbenseitigen Hohlraums (5041) und des federseitigen Hohlraums (5062) gleich sind.Das Umkehrventil nach Anspruch 14, wobeidas Umkehrventil ferner einen Belüftungskanal (5031) aufweist, der auf der Kolbenseite angeordnet ist und mit dem Äußeren des Umkehrventils kommuniziert, und der Belüftungskanal (5031) mit dem kolbenseitigen Hohlraum durch einen Spalt zwischen dem Ventilelement (5060) und dem Kolbensitz (5030) kommuniziert.Das Umkehrventil nach Anspruch 16, wobeider Belüftungskanal (5031) gebogen ist.Ein Haushaltswasseraufbereiter, aufweisend:ein Umkehrosmose-Membranfilterelement (200), aufweisend einen Wassereinlass (2001), einen Reinwasserauslass (2003) und einen Unreinwasserauslass (2002), wobei der Wassereinlass (2001) zum Aufnehmen von zu behandelndem Wasser verwendet wird;ein erstes Einwegventil (202) mit einem Wassereinlass, der mit dem Reinwasserauslass (2003) des Umkehrosmose-Membranfilterelements (200) durch einen Wasserweg kommuniziert;ein zweites Einwegventil (301) mit einem Wassereinlass, der mit einem Wasserauslass des ersten Einwegventils durch einen Wasserweg kommuniziert und einen Wasserauslass aufweist, der mit einem Wassereinlass eines Hahns (600) durch einen Wasserweg kommuniziert;einen Wasserspeichertank (400), aufweisend einen ersten Hohlraum (4001) und einen zweiten Hohlraum (4002), die durch eine wasserdichte Folie isoliert und gebildet sind, wobei Gesamtkapazitäten der zwei Hohlräume festgelegt sind und die Kapazität des ersten Hohlraums (4001) abnimmt, wenn die Kapazität des zweiten Hohlraums (4002) zunimmt, oder die Kapazität des ersten Hohlraums (4001) zunimmt, wenn die Kapazität des zweiten Hohlraums (4002) abnimmt; der erste Hohlraum (4001) zum Aufnehmen von Reinwasser aus dem Reinwasserauslass (2003) des Umkehrosmose-Membranfilterelements (200) verwendet wird und mit dem Wasserauslass des ersten Einwegventils (202) und dem Wassereinlass des zweiten Einwegventils durch einen Wasserweg kommuniziert und der zweite Hohlraum (4002) zum Aufnehmen von Unreinwasser aus dem Unreinwasserauslass (2002) des Umkehrosmose-Membranfilterelements (200) verwendet wird;eine Schaltvorrichtung, die zum Verbinden oder Trennen eines Wasserwegs zu dem Wassereinlass (2001) des Umkehrosmose-Membranfilterelements (200) gemäß einer Druckänderung in dem ersten Hohlraum (4001) des Wasserspeichertanks (400) verwendet wird; unddas Umkehrventil (500) nach den Ansprüchen 9, 10, 11, 12, wobei der erste Kanal (5001) des Umkehrventils (500) mit einem Wassereinlass eines Hahns (600) durch einen Wasserweg kommuniziert, der vierte Kanal (5002) des Umkehrventils (500) mit dem Unreinwasserauslass (2002) des Umkehrosmose-Membranfilterelements (200) durch einen Wasserweg kommuniziert, der zweite Kanal (5003) des Umkehrventils (500) mit einem Ablaufweg durch einen Wasserweg kommuniziert, der dritte Kanal (5004) des Umkehrventils (500) mit dem zweiten Hohlraum (4002) des Wasserspeichertanks (400) durch einen Wasserweg kommuniziert, das Umkehrventil (500) zum Verbinden des vierten Kanals (5002) mit dem dritten Kanal (5004) und währenddessen Trennen des zweiten Kanals (5003) von dem dritten Kanal (5004) gemäß einer Änderung des durch den ersten Kanal (5001) auf den Kolben (5040) wirkenden Wasserdrucks oder zum Trennen des vierten Kanals (5002) von dem dritten Kanal (5004) und währenddessen Verbinden des zweiten Kanals (5003) mit dem dritten Kanal(5004) gemäß einer Änderung des durch den ersten Kanal (5001) auf den Kolben (5040) wirkenden Wasserdrucks verwendet wird.Der Haushaltswasseraufbereiter nach Anspruch 18, wobei, wenn der Druck des ersten Hohlraums (4001) des Wasserspeichertanks (400) auf einen ersten Schwellenwert abnimmt, die Schaltvorrichtung den Wasserweg mit dem Wassereinlass (2001) des Umkehrosmose-Membranfilterelements (200) verbindet, und wenn der Druck des ersten Hohlraums (4001) des Wasserspeichertanks (400) auf einen zweiten Schwellenwert zunimmt, die Schaltvorrichtung den Wasserweg zu dem Wassereinlass (2001) des Umkehrosmose-Membranfilterelements (200) trennt, und der erste Schwellenwert kleiner als der zweite Schwellenwert ist.Der Haushaltswasseraufbereiter nach Anspruch 18, wobei, wenn der durch den ersten Kanal (5001) auf den Kolben (5040) wirkende Wasserdruck auf einen dritten Schwellenwert abnimmt, das Umkehrventil (500) den vierten Kanal (5002) mit dem dritten Kanal (5004) verbindet und währenddessen den zweiten Kanal (5003) von dem dritten Kanal (5004) trennt, und wenn der durch den ersten Kanal (5001) auf den Kolben (5040) wirkende Wasserdruck auf einen vierten Schwellenwert zunimmt, das Umkehrventil (500) den vierten Kanal (5002) von dem dritten Kanal (5004) trennt und währenddessen den zweiten Kanal (5003) mit dem dritten Kanal (5004) verbindet, und der dritte Schwellenwert kleiner als der vierte Schwellenwert ist.
Vanne d'inversion (500), comprenant :un corps de vanne (5050), ayant un élément de vanne cylindrique ou approximativement cylindrique (5060) disposé à l'intérieur de celui-ci, dans laquelle l'élément de vanne (5060) a une première surface d'extrémité et une deuxième surface d'extrémité opposée à la première surface d'extrémité ;un siège de piston (5030), disposé sur le côté de première surface d'extrémité de l'élément de vanne (5060) et ayant au moins une partie en contact avec le corps de vanne (5050), dans laquelle un piston mobile axialement (5040) est disposé dans le siège de piston (5030) ;un couvercle d'extrémité de membrane (5010), disposé d'un côté du siège de piston (5030) opposé au corps de vanne (5050) ;une membrane de piston (5020), fixée au couvercle d'extrémité de membrane (5010) et disposée entre le couvercle d'extrémité de membrane (5010) et le siège de piston (5030), et disposée entre le piston (5040) et le siège de piston (5030), le piston (5040) et le siège de piston (5030) étant séparés par la membrane (5020) de sorte que le piston (5040) n'a pas de contact direct avec le siège de piston (5030) pendant un déplacement axial du piston (5040) ; etun logement de ressort (5070), disposé sur le côté de deuxième surface d'extrémité de l'élément de vanne (5060) et ayant au moins une partie en contact avec le corps de vanne (5050), dans laquelle un ressort de compression (5080) est disposé dans le logement de ressort (5070) et le ressort de compression (5080) est disposé pour être en contact avec la deuxième surface d'extrémité de l'élément de vanne (5060),dans laquelle la membrane de piston (5020), le piston (5040), l'élément de vanne (5060), et le ressort de compression (5080) sont disposés pour être coaxiaux et mobiles axialement ; et dans laquelle la membrane de piston (5020) et le couvercle d'extrémité de membrane (5010) forment conjointement une première cavité (5011) dans le couvercle d'extrémité de membrane (5010), et la premièrecavité communique avec l'extérieur de la vanne d'inversion (500) à travers un premier canal (5001) ;une première bague d'étanchéité (5021), une deuxième bague d'étanchéité (5022), une troisième bague d'étanchéité (5023), et une quatrième bague d'étanchéité (5024) sont disposées séquentiellement à différentes positions prédéterminées dans le corps de vanne (5050) dans une direction de la première surface d'extrémité à la deuxième surface d'extrémité ; dans laquelle le corps de vanne (5050), l'élément de vanne (5060), la première bague d'étanchéité (5021), et la deuxième bague d'étanchéité (5022) forment conjointement une deuxième cavité (5051) dans le corps de vanne (5050) ; la deuxième cavité (5051) communique avec l'extérieur de la vanne d'inversion (500) à travers un deuxième canal (5003) ; le corps de vanne (5050), l'élément de vanne (5060), la deuxième bague d'étanchéité (5022), et la troisième bague d'étanchéité (5023) forment conjointement une troisième cavité (5052) dans le corps de vanne (5050) ; la troisième cavité (5052) communique avec l'extérieur de la vanne d'inversion (500) à travers un troisième canal (5004) ; le corps de vanne (5050), l'élément de vanne (5060), la troisième bague d'étanchéité (5023), et la quatrième bague d'étanchéité (5024) forment conjointement une quatrième cavité (5053) dans le corps de vanne (5050), et la quatrième cavité (5053) communique avec l'extérieur de la vanne d'inversion (500) à travers un quatrième canal (5002) ;une première partie renfoncée (5064) et une deuxième partie renfoncée (5063) sont disposées séquentiellement sur une surface cylindrique de l'élément de vanne (5060) dans la direction de la première surface d'extrémité à la deuxième surface d'extrémité, dans laquelle la deuxième partie renfoncée (5063) est espacée de la première partie renfoncée (5064) d'une distance prédéterminée dans une direction axiale de la surface cylindrique de l'élément de vanne (5060) ; dans laquelle lorsque l'élément de vanne (5060) se déplace vers une position où la première partie renfoncée (5064) chevauche spatialement la deuxième bague d'étanchéité (5022), la deuxième cavité (5051) communique avec la troisième cavité (5052) ;caractérisée en ce quele corps de vanne (5050) vient en contact avec l'élément de vanne (5060) par les première à quatrième bagues d'étanchéité (5021, 5022, 5023, 5024), eten ce quelorsque l'élément de vanne (5060) se déplace vers une position où la deuxième partie renfoncée (5063) chevauche spatialement la troisième bague d'étanchéité (5023), la troisième cavité (5052) communique avec la quatrième cavité (5053).Vanne d'inversion selon la revendication 1, dans laquellel'élément de vanne (5060) est creux et a un conduit (5061) disposé à l'intérieur de celui-ci et connecte les première et deuxième surfaces d'extrémité de celui-ci.Vanne d'inversion selon la revendication 1, dans laquellele couvercle d'extrémité de membrane (5010), le siège de piston (5030), le corps de vanne (5050), et le logement de ressort (5070) sont fixés ensemble par des attaches à boulon et écrou, des connexions filetées, ou par soudage.Vanne d'inversion selon la revendication 1, dans laquellele siège de piston (5030), le corps de vanne (5050), et le logement de ressort (5070) sont formés d'un seul tenant, et le couvercle d'extrémité de membrane (5010) et la partie formée d'un seul tenant sont fixés ensemble par des attaches à boulon et écrou, des connexions filetées, ou par soudage.Vanne d'inversion selon la revendication 1, dans laquellele corps de vanne (5050) et le siège de piston (5030) sont formés d'un seul tenant, et le couvercle d'extrémité de membrane (5010), la partie formée d'un seul tenant, et le logement de ressort (5070) sont fixés ensemble par des attaches à boulon et écrou, des connexions filetées, ou par soudage.Vanne d'inversion selon la revendication 1, dans laquellele corps de vanne (5050) et le logement de ressort (5070) sont formés d'un seul tenant, et le couvercle d'extrémité de membrane (5010), le siège de piston (5030), et la partie formée d'un seul tenant sont fixés ensemble par des attaches à boulon et écrou, des connexions filetées, ou par soudage.Vanne d'inversion selon la revendication 2, dans laquellechacune de la première partie renfoncée (5064) et de la deuxième partie renfoncée (5063) est constituée d'un groupe d'évidements répartis autour d'un axe de l'élément de vanne (5060) sur la surface de l'élément de vanne (5060) et espacés les uns des autres, et aucun des évidements ne communique avec le conduit (5061) de l'élément de vanne (5060).Vanne d'inversion selon la revendication 2, dans laquelleune partie du piston (5040) s'étend dans le conduit (5061) de l'élément de vanne (5060).Vanne d'inversion selon la revendication 1, dans laquellelorsqu'une pression agissant sur la membrane de piston (5020) à travers le premier canal (5001) diminue, l'élément de vanne (5060), étant poussé par le ressort de compression (5080), se déplace vers un côté de piston jusqu'à ce qu'il atteigne une première position prédéterminée, et à partir de ce point jusqu'à ce que l'élément de vanne (5060) se déplace vers une deuxième position prédéterminée où le piston (5040) est arrêté par le couvercle d'extrémité de membrane (5010), la deuxième partie renfoncée (5063) chevauche spatialement la troisième bague d'étanchéité (5023) de sorte que la troisième cavité (5052) communique avec la quatrième cavité (5053), et la première partie renfoncée (5064) est située entre la première bague d'étanchéité (5021) et la deuxième bague d'étanchéité (5022), et la première partie renfoncée (5064) ne chevauche spatialement aucune des deux bagues d'étanchéité.Vanne d'inversion selon la revendication 1, dans laquellelorsqu'une pression agissant sur la membrane de piston (5020) à travers le premier canal (5001) augmente de sorte que l'élément de vanne (5060) se déplace vers un côté de ressort de compression et que la quantité de déplacement de l'élément de vanne (5060) se trouve dans une plage prédéterminée, la première partie renfoncée (5064) est située entre la première bague d'étanchéité (5021) et la deuxième bague d'étanchéité (5022), et la première partie renfoncée (5064) ne chevauche spatialement aucune des deux bagues d'étanchéité, et la deuxième partie renfoncée (5063) est située entre la troisième bague d'étanchéité (5023) et la quatrième bague d'étanchéité (5024), etla deuxième partie renfoncée (5063) ne chevauche spatialement aucune des deux bagues d'étanchéité.Vanne d'inversion selon la revendication 10, dans laquellelorsque la pression agissant sur la membrane de piston (5020) à travers le premier canal (5001) continue d'augmenter, l'élément de vanne (5060) continue de se déplacer vers le côté de ressort de compression jusqu'à ce qu'il atteigne une troisième position prédéterminée, et à partir de ce point jusqu'à ce que l'élément de vanne (5060) continue de se déplacer vers une quatrième position prédéterminée où le piston (5040) est arrêté par le siège de piston (5030), la première partie renfoncée (5064) chevauche spatialement la deuxième bague d'étanchéité (5022) de sorte que la deuxième cavité (5051) communique avec la troisième cavité (5052), et la deuxième partie renfoncée (5063) est située entre la troisième bague d'étanchéité (5023) et la quatrième bague d'étanchéité (5024), et la deuxième partie renfoncée (5063) ne chevauche spatialement aucune des deux bagues d'étanchéité.Vanne d'inversion selon la revendication 1, dans laquellela première partie renfoncée (5064) est conçue pour chevaucher spatialement la deuxième bague d'étanchéité (5022) uniquement, la deuxième partie renfoncée (5063) est conçue pour chevaucher spatialement la troisième bague d'étanchéité (5023) uniquement, et le chevauchement spatial entre la première partie renfoncée (5064) et la deuxième bague d'étanchéité (5022) ne coexiste pas avec le chevauchement spatial entre la deuxième partie renfoncée (5063) et la troisième bague d'étanchéité (5023).Vanne d'inversion selon la revendication 2, dans laquellela vanne d'inversion comprend en outre une cavité de côté piston (5041) située au niveau d'un côté piston, la cavité de côté piston (5041) est formée conjointement par la membrane de piston (5020), l'élément de vanne (5060), et le siège de piston (5030), et la cavité de côté piston (5041) communique avec le conduit (5061) de l'élément de vanne (5060), et lorsque l'élément de vanne (5060) se déplace vers le couvercle d'extrémité de membrane (5010), un volume de la cavité de côté piston (5041) augmente, et lorsque l'élément de vanne (5060) sedéplace vers le logement de ressort (5070), le volume de la cavité de côté piston (5041) diminue.Vanne d'inversion selon la revendication 13, dans laquellela vanne d'inversion comprend en outre une cavité de côté ressort (5062) située au niveau d'un côté ressort, la cavité de côté ressort (5062) est formée conjointement par le corps de vanne (5050), l'élément de vanne (5060), et le logement de ressort (5070), et la cavité de côté ressort (5062) communique avec le conduit (5061) de l'élément de vanne (5060), et lorsque l'élément de vanne (5060) se déplace vers le couvercle d'extrémité de membrane (5010), un volume de la cavité de côté ressort (5062) augmente, et lorsque l'élément de vanne (5060) se déplace vers le logement de ressort (5070), le volume de la cavité de côté ressort (5062) diminue.Vanne d'inversion selon la revendication 14, dans laquellelorsque l'élément de vanne (5060) se déplace d'une manière alternative dans le corps de vanne (5050), les valeurs de volume augmenté ou diminué de la cavité de côté piston (5041) et de la cavité de côté ressort (5062) sont les mêmes.Vanne d'inversion selon la revendication 14, dans laquellela vanne d'inversion comprend en outre un canal de ventilation (5031) situé au niveau du côté piston et communique avec l'extérieur de la vanne d'inversion, et le canal de ventilation (5031) communique avec la cavité de côté piston à travers un écartement entre l'élément de vanne (5060) et le siège de piston (5030).Vanne d'inversion selon la revendication 16, dans laquelle le canal de ventilation (5031) est coudé.Purificateur d'eau domestique, comprenant :un élément de filtre à membrane d'osmose inverse (200), comprenant une entrée d'eau (2001), une sortie d'eau pure (2003), et une sortie d'eau non pure (2002), dans lequel l'entrée d'eau (2001) est utilisée pour recevoir de l'eau à traiter ;une première vanne unidirectionnelle (202), ayant une entrée d'eau communiquant avec la sortie d'eau pure (2003) de l'élément de filtre à membrane d'osmose inverse (200) à travers une voie d'eau ;une deuxième vanne unidirectionnelle (301), ayant une entrée d'eau communiquant avec une sortie d'eau de la première vanne unidirectionnelle à travers une voie d'eau et ayant une sortie d'eau communiquant avec une entrée d'eaud'un robinet (600) à travers une voie d'eau ;un réservoir de stockage d'eau (400), comprenant une première cavité (4001) et une deuxième cavité (4002) isolées et formées par un film étanche, dans lequel les capacités totales des deux cavités sont fixes, et la capacité de la première cavité (4001) diminue tandis que la capacité de la deuxième cavité (4002) augmente ou la capacité de la première cavité (4001) augmente tandis que la capacité de la deuxième cavité (4002) diminue ; la première cavité (4001) est utilisée pour recueillir de l'eau pure de la sortie d'eau pure (2003) de l'élément de filtre à membrane d'osmose inverse (200) et communique avec la sortie d'eau de la première vanne unidirectionnelle (202) et l'entrée d'eau de la deuxième vanne unidirectionnelle à travers une voie d'eau, et la deuxième cavité (4002) est utilisée pour recueillir de l'eau non pure de la sortie d'eau non pure (2002) de l'élément de filtre à membrane d'osmose inverse (200) ;un dispositif de commutation, utilisé pour connecter ou déconnecter une voie d'eau à l'entrée d'eau (2001) de l'élément de filtre à membrane d'osmose inverse (200) selon un changement de pression dans la première cavité (4001) du réservoir de stockage d'eau (400) ; etla vanne d'inversion (500) selon les revendications 9, 10, 11, 12, dans lequel le premier canal (5001) de la vanne d'inversion (500) communique avec une entrée d'eau d'un robinet (600) à travers une voie d'eau, le quatrième canal (5002) de la vanne d'inversion (500) communique avec la sortie d'eau non pure (2002) de l'élément de filtre à membrane d'osmose inverse (200) à travers une voie d'eau, le deuxième canal (5003) de la vanne d'inversion (500) communique avec un passage de drainage à travers une voie d'eau, le troisième canal (5004) de la vanne d'inversion (500) communique avec la deuxième cavité (4002) du réservoir de stockage d'eau (400) à travers une voie d'eau, la vanne d'inversion (500) est utilisée pour connecter le quatrième canal (5002) au troisième canal (5004) et entre-temps déconnecter le deuxième canal (5003) dutroisième canal (5004) selon un changement de pression d'eau agissant sur le piston (5040) à travers le premier canal (5001), ou déconnecter le quatrième canal (5002) du troisième canal (5004) et entre-temps connecter le deuxième canal (5003) au troisième canal (5004) selon un changement de pression d'eau agissant sur le piston (5040) à travers le premier canal (5001).Purificateur d'eau domestique selon la revendication 18, dans lequel lorsque la pression de la première cavité (4001) du réservoir de stockage d'eau (400) diminue jusqu'à un premier seuil, le dispositif de commutation connecte la voie d'eau à l'entrée d'eau (2001) de l'élément de filtre à membrane d'osmose inverse (200), et lorsque la pression de la première cavité (4001) du réservoir de stockage d'eau (400) augmente jusqu'à un deuxième seuil, le dispositif de commutation déconnecte la voie d'eau à l'entrée d'eau (2001) de l'élément de filtre à membrane d'osmose inverse (200), et le premier seuil est inférieur au deuxième seuil.Purificateur d'eau domestique selon la revendication 18, dans lequel lorsque la pression d'eau agissant sur le piston (5040) à travers le premier canal (5001) diminue jusqu'à un troisième seuil, la vanne d'inversion (500) connecte le quatrième canal (5002) au troisième canal (5004), et entre-temps déconnecte le deuxième canal (5003) du troisième canal (5004), et lorsque la pression d'eau agissant sur le piston (5040) à travers le premier canal (5001) augmente jusqu'à un quatrième seuil, la vanne d'inversion (500) déconnecte le quatrième canal (5002) du troisième canal (5004) et entre-temps connecte le deuxième canal (5003) au troisième canal (5004), et le troisième seuil est inférieur au quatrième seuil.
See morePatent References
Patent | Publication Date | Title |
---|---|---|
WO2014/058724A1 | N/A | N/A |
US3561489A | N/A | N/A |
US3625246A | N/A | N/A |
8628602 | 31/05/1988 | Weight transfer control for a front mount mower |
6284310 | 25/11/1997 | Candle wick holder |
36813& | 06/02/1996 | Bed frame |
US2005098755A1 | N/A | N/A |
US2009178713A1 | N/A | N/A |
US2014131281A1 | N/A | N/A |
US2014326665A1 | N/A | N/A |
US2016169402A1 | N/A | N/A |
WO200168227A1 | N/A | N/A |
US3625246A | N/A | N/A |
36813& | 06/02/1996 | Bed frame |
US2009178713A1 | N/A | N/A |
US3561489A | N/A | N/A |
US2005098755A1 | N/A | N/A |
US2016169402A1 | N/A | N/A |