
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
81

2 
89

8
A

2
*EP003812898A2*

(11) EP 3 812 898 A2
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
28.04.2021 Bulletin 2021/17

(21) Application number: 21157904.0

(22) Date of filing: 18.02.2021

(51) Int Cl.:
G06F 9/455 (2018.01) G06F 9/445 (2018.01)

G06F 8/60 (2018.01) G06F 11/30 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(30) Priority: 15.05.2020 CN 202010415301

(71) Applicant: BEIJING BAIDU NETCOM SCIENCE 
TECHNOLOGY CO., LTD.
No.10 Shangdi 10th Street
Haidian District
Beijing 100085 (CN)

(72) Inventor: CHEN, Du
Beijing, 100085 (CN)

(74) Representative: Studio Torta S.p.A.
Via Viotti, 9
10121 Torino (IT)

(54) CONTAINER-BASED METHOD FOR APPLICATION STARTUP

(57) The present application discloses an application
startup method and apparatus, a device and a storage
medium. The specific implementation solution thereof is:
the method is applied to a host application having carried
thereon at least one accessory application, and the meth-
od includes: preprocessing, if it is determined that a pre-
processing condition of the at least one accessory appli-
cation is met, an accessory application by using a corre-
sponding running container in a background, wherein
preprocessing comprises preloading of the accessory
application and pre-downloading of service data; and
starting a corresponding accessory application in a fore-

ground, in response to a selection operation of the ac-
cessory application. In this way, preprocessing process-
es of different accessory applications can be physically
isolated, completely, through the running container and
mutual interference can be avoided, thereby protecting
a running sandbox mechanism between accessory ap-
plications, realizing free installation of corresponding ac-
cessory application in the running container, improving
security during accessory application preprocessing and
speed of starting the accessory application, and avoiding
startup performance degradation.



EP 3 812 898 A2

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The present application relates to the field of
data processing technology and, in particular, to artificial
intelligence technology.

BACKGROUND

[0002] With the development of mobile internet, vari-
ous applications (referred to as APP) have emerged.
Since smart applets can be used without downloading
and installing by a user, there are various smart applets
configured in many APPs. The APP is a host application,
and the smart applet is an accessory application.
[0003] In the prior art, in order to start the accessory
application instantly, it is necessary to preload the ac-
cessory application and pre-download the service data
in advance, that is, to preprocess the accessory applica-
tion.
[0004] However, preprocessing each accessory appli-
cation in the prior art is a single-threaded task. If the user
starts another accessory application while an accessory
application is preloaded, then the first accessory appli-
cation must be preloaded before another accessory ap-
plication is started, resulting in performance degradation.
Moreover, applying the single-threaded task to preload
multiple accessory applications will destroy running
sandbox mechanism between various accessory appli-
cations and then cause the various accessory applica-
tions to interfere with each other, thereby making it im-
possible to freely configure the accessory applications
for developers and posing a greater security risk.

SUMMARY

[0005] Embodiments of the present application provide
an application startup method and apparatus, a device
and a storage medium, which solve the problems of de-
stroying a running sandbox mechanism between various
accessory applications, causing the various accessory
applications to interfere with each other, and having a
greater security risk, which are all the result of using a
single-threaded task to preload multiple accessory ap-
plications.
[0006] A first aspect of an embodiment of the present
application provides an application startup method that
is applied to a host application having carried thereon at
least one accessory application, and the method in-
cludes:

preprocessing, if it is determined that a preprocess-
ing condition of the at least one accessory applica-
tion is met, an accessory application by using a cor-
responding running container in a background; and
starting a corresponding accessory application in a
foreground, in response to a selection operation to

the accessory application.

[0007] A second aspect of an embodiment of the
present application provides an application startup ap-
paratus that is applied to a host application having carried
thereon at least one accessory application, and the ap-
paratus includes:

an application preprocessing module, configured to
preprocess, if it is determined that a preprocessing
condition of the at least one accessory application
is met, an accessory application by using a corre-
sponding running container in a background; and
an application startup module, configured to start a
corresponding accessory application in a fore-
ground, in response to a selection operation to the
accessory application.

[0008] A third aspect of an embodiment of the present
application provides an electronic device, which in-
cludes: at least one processor; and a memory commu-
nicatively connected with the at least one processor;
where,
the memory stores instructions executable by the at least
one processor, and the instructions are executed by the
at least one processor to enable the at least one proces-
sor to perform the method according to any one of the
first aspect.
[0009] A fourth aspect of an embodiment of the present
application provides a non-transitory computer-readable
storage medium having stored thereon computer instruc-
tions, where the computer instructions are used to cause
a computer to perform the method according to any one
of the first aspect.
[0010] A fifth aspect of an embodiment of the present
application provides a computer program, which includes
program codes, when a computer runs the computer pro-
gram, the program codes execute the method according
to any one of the first aspect.
[0011] A sixth aspect of the present application pro-
vides a computer program product, where the program
product includes: a computer program, the computer pro-
gram is stored in a readable storage medium, at least
one processor of the electronic device can read the com-
puter program from the readable storage medium, and
the at least one processor executes the computer pro-
gram such that the electronic device executes the meth-
od according to any one of the first aspect.
[0012] When preprocessing the accessory application,
the corresponding running container is used in the back-
ground to preprocess the accessory application, so that
preprocessing processes of different accessory applica-
tions can be physically isolated, completely, through the
running container and mutual interference can be avoid-
ed, thereby protecting a running sandbox mechanism be-
tween accessory applications, realizing free installation
of corresponding accessory application in the running
container, and improving security during accessory ap-

1 2 



EP 3 812 898 A2

3

5

10

15

20

25

30

35

40

45

50

55

plication preprocessing. Moreover, since each running
container is an independent single-threaded task, when
an accessory application is preloaded in the correspond-
ing running container, if the user starts another accessory
application, such accessory application can also be start-
ed directly in the corresponding running container. It is
not necessary to start the accessory application after the
preloading of the other accessory application is complet-
ed. The speed of starting the accessory application is
improved and the startup performance degradation is
avoided.
[0013] It should be understood that what is described
herein is not intended to identify key or important features
of the embodiments of the present disclosure, nor is it
used to limit the scope of the present disclosure. Other
features of the present disclosure will be easily under-
stood from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Accompanying drawings are used for better un-
derstanding of the solution and do not constitute a limi-
tation to the present application, in which:

FIG. 1 is a first application scenario that can imple-
ment an application startup method according to an
embodiment of the present application;
FIG. 2 is a second application scenario that can im-
plement an application startup method according to
an embodiment of the present application;
FIG. 3 is a schematic flowchart of an application star-
tup method according to Embodiment 1 of the
present application;
FIG. 4 is a schematic flowchart of an application star-
tup method according to Embodiment 2 of the
present application;
FIG. 5 is a schematic flowchart of an application star-
tup method according to Embodiment 3 of the
present application;
FIG. 6 is a schematic structural diagram of an appli-
cation startup apparatus according to Embodiment
4 of the present application;
FIG. 7 is a schematic structural diagram of an appli-
cation startup apparatus according to Embodiment
5 of the present application; and
FIG. 8 is a block diagram of an electronic device
used to implement the application startup method
according to an embodiment of the present applica-
tion.

DESCRIPTION OF EMBODIMENTS

[0015] Exemplary embodiments of the present appli-
cation are described below with reference to the accom-
panying drawings, which include various details of the
embodiments of the present application that are useful
for understanding the present application and should be
considered as merely exemplary. Therefore, those of or-

dinary skilled in the art should realize that various chang-
es and modifications can be made to the embodiments
described herein without departing from the scope and
spirit of the present application. Likewise, for clarity and
conciseness, descriptions of well-known functions and
structures are omitted in the following description.
[0016] In order to clearly understand the technical so-
lution of the present application, firstly, the solution in the
prior art is described in detail. Since smart applets can
be used without downloading and installing by the user,
they are various smart applets carried in many APPs.
The smart applet carried is an accessory application, and
APP is a host application. In the prior art, if the accessory
application is triggered to start after the user starts the
host application, for the purpose of starting the accessory
application instantly, it is necessary to perform preproc-
essing on the accessory application, which includes
preloading of the accessory application and pre-down-
loading of service data. In the prior art, a single-threaded
task is used to preprocess multiple accessory applica-
tions when facing the multiple accessory applications. If
the user starts another accessory application while a first
accessory application is preloaded, the first accessory
application must be preloaded before the above another
accessory application is started, thereby resulting in per-
formance degradation. Moreover, applying the single-
threaded task to preload multiple accessory applications
will destroy the running sandbox mechanism between
various accessory applications and then cause the var-
ious accessory applications interfere with each other,
thereby making it impossible to freely configure the ac-
cessory applications for lots of developers and posing a
greater security risk. For example, if the developer of the
first accessory application configures a timer in the
preloading process, when the user starts the second ac-
cessory application, the preloading process of the first
accessory application will interfere with the second ac-
cessory application started by the user because the timer
front-end framework of the first accessory application
cannot be destroyed uniformly, thereby destroying the
running sandbox mechanism between various accessory
applications.
[0017] Therefore, for the problem of preprocessing
multiple accessory applications with a single-threaded
task in the prior art, the inventor found through research:
since the running container can physically isolate differ-
ent tasks well, and each running container is an inde-
pendent single-threaded task at runtime and can run in-
dependently, preprocessing processes of multiple ac-
cessory applications can be deployed in different running
containers. If it is determined that preprocessing condi-
tion of at least one accessory application is met, an ac-
cessory application is preprocessed by using a corre-
sponding running container in the background; and in
response to selecting the accessory application, a cor-
responding accessory application is started in the fore-
ground.
[0018] Based on the foregoing creative discovery, the

3 4 



EP 3 812 898 A2

4

5

10

15

20

25

30

35

40

45

50

55

inventor proposed the technical solution of the present
application. The following describes the application sce-
nario of the application startup method provided in the
embodiment of the present application.
[0019] As shown in FIG. 1, the application scenario of
the embodiment of the present application may be a
search scenario. Specifically, a host application is in-
stalled in the electronic device, and at least one acces-
sory application is installed in the host application. After
entering the host application, a search box can be set in
the display area of the host application, and the user may
enter keywords (e.g., "impact") in the search box to trig-
ger a search request. The host application searches for
resources according to the search request, and displays
the searched resources on the resource result page in
the display area. If it is determined that at least one ac-
cessory application is included in the resource result
page, it is determined that preprocessing conditions of
the at least one accessory application are met, and the
corresponding running container is pre-created in the
background. For example, two running containers are
pre-created in FIG. 2, where one is a first running con-
tainer, and the other is a second running container. The
corresponding running container is used to preprocess
the accessory application in the background. As shown
in FIG. 2, the first running container is used to preprocess
the first accessory application, and the second running
container is used to preprocess the second accessory
application. Where the first accessory application is "XX
Wiki", and the second accessory application is "XX Mu-
sic". After the accessory application is preprocessed by
the running container, the startup display page of the
accessory application is included in the running contain-
er. If a user’s selection operation (such as "clicking") on
an accessory application is received, the host application
starts the corresponding accessory application in the
foreground, so that the startup display page of the ac-
cessory application is able to display.
[0020] As shown in FIG. 2, the application scenario of
the embodiment of the present application may also be
a push scenario of the information flow. Specifically, a
host application is installed in the electronic device, and
at least one accessory application is installed in the host
application. After entering the host application, a re-
source result page recommended by the information flow
is displayed in the display area of the host application,
where the resources displayed on the recommended re-
source result page can be recommended based on user
behavior information, historical browsing information,
and the like. If it is determined that at least one accessory
application is included in the resource result page, it is
determined that preprocessing condition of the at least
one accessory application are met, and the correspond-
ing running container is pre-created in the background.
Similar to the search scenario, two running containers
are pre-created in FIG. 3, where one is a first running
container, and the other is a second running container.
The corresponding running container is used to preproc-

ess the accessory application in the background. Exem-
plarily, the first running container is used to preprocess
the first accessory application, and the second running
container is used to preprocess the second accessory
application. Where the first accessory application is "XX
Tourism", and the second accessory application is "XX
Group". After the accessory application is preprocessed
by using the corresponding running container, the startup
display page of the accessory application is included in
the corresponding running container. If a user’s selection
operation (such as "clicking") on an accessory applica-
tion is received, the host application starts the corre-
sponding accessory application in the foreground, so that
the startup display page of the accessory application is
able to display.
[0021] It is understandable that the application startup
method provided in the embodiment of the present ap-
plication can also be applied in other application scenar-
ios, which is not limited in this embodiment.
[0022] The embodiments of the present application will
be specifically described below with reference to the ac-
companying drawings.

Embodiment 1

[0023] FIG. 3 is a schematic flowchart of an application
startup method according to Embodiment 1 of the present
application. As shown in FIG. 3, the executive subject of
the embodiment of the present application is an applica-
tion startup apparatus that can be applied to a host ap-
plication, which is installed in an electronic device. At
least one accessory application is carried in the host ap-
plication, and the application startup method provided in
this embodiment includes following steps.
[0024] Step 101, preprocessing, if it is determined that
a preprocessing condition of the at least one accessory
application is met, an accessory application by using a
corresponding running container in a background.
[0025] In this embodiment, since at least one acces-
sory application is carried in the host application, when
starting the host application, for the purpose of starting
the accessory application instantly when the accessory
application startup conditions are met, it is necessary to
create multiple running containers in the background.
Each running container is a single-threaded task at runt-
ime, and different running containers are physically iso-
lated and will not interfere with each other.
[0026] And then it is necessary to monitor whether the
preprocessing conditions of at least one subsidiary ap-
plication are met; if yes, the accessory application is pre-
processed by using the corresponding running container
in the background.
[0027] Where the preprocessing process of the host
application to the accessory application includes the
preloading process of the accessory application and the
pre-downloading process of the accessory application to
its service data. After the service data is downloaded,
the accessory application can render and generate, ac-

5 6 



EP 3 812 898 A2

5

5

10

15

20

25

30

35

40

45

50

55

cording to the service data, a startup display page cor-
responding to the accessory application.
[0028] Therefore, in this embodiment, the host appli-
cation monitors whether the preloading conditions of the
accessory application are met when monitoring whether
the preprocessing conditions of the accessory applica-
tion are met. If the preloading conditions of the accessory
application are met, the corresponding running container
is obtained in the background, and the accessory appli-
cation is preloaded in the running container. Afterwards,
the accessory application monitors whether the pre-
download conditions of its service data are met; if yes,
the service data is pre-downloaded in the corresponding
running container, and a startup display page corre-
sponding to the accessory application can be rendered
and generated in the running container according to the
service data, so that when the host application deter-
mines that the starting conditions of the accessory appli-
cation are met, it obtains the startup display page of the
accessory application from the corresponding running
container, and displays the startup display page in the
display area of the accessory application.
[0029] Step 102, starting a corresponding accessory
application in a foreground, in response to a selection
operation to the accessory application.
[0030] In this embodiment, after the preprocessing of
the corresponding accessory application is completed in
the corresponding running container in the background,
if the user triggers the selection operation to an accessory
application, such as clicking the icon of the accessory
application, in response to the selection operation of the
accessory application, the startup display page of the
accessory application is obtained from the corresponding
running container and the startup display page is dis-
played in the display area of the foreground, so as to start
the corresponding accessory application.
[0031] In the application startup method provided by
this embodiment, if it is determined that the preprocess-
ing conditions of at least one accessory application are
met, the accessory application is pro-processed in the
background by using the corresponding running contain-
er; and in response to the selection operation to the ac-
cessory application, the corresponding accessory appli-
cation is started in the foreground. When preprocessing
the accessory application, the corresponding running
container is used in the background to preprocess the
accessory application, so that preprocessing processes
of different accessory applications can be physically iso-
lated, completely, through the running container and mu-
tual interference can be avoided, thereby protecting a
running sandbox mechanism between accessory appli-
cations, realizing free installation of corresponding ac-
cessory application in the running container, and improv-
ing security during accessory application preprocessing.
Moreover, since each running container is an independ-
ent single-threaded task, when an accessory application
is preloaded in the corresponding running container, if
the user starts another accessory application, such ac-

cessory application can also be started directly in the
corresponding running container. It is not necessary to
start the accessory application after the preloading of the
other accessory application is completed. The speed of
starting the accessory application is improved and the
startup performance degradation is avoided.

Embodiment 2

[0032] FIG. 4 is a schematic flowchart of an application
startup method according to Embodiment 2 of the present
application. As shown in FIG. 4, on the basis of the ap-
plication startup method provided in Embodiment 1 of
the present application, the application startup method
provided in this embodiment further defines step 101 to
step 102, and it further includes the steps as following:
creating a running container, destroying the running con-
tainer corresponding to the non-started accessory appli-
cation so as to destroy the non-started accessory appli-
cation, and destroying the running container correspond-
ing to the accessory application performing the closing
operation if the closing operation of the started accessory
application is monitored. Therefore, the application star-
tup method provided in this embodiment includes follow-
ing steps.
[0033] Step 201, Monitoring whether a condition for
creating a running container is met.
[0034] In this embodiment, since at least one acces-
sory application is carried in the host application, as an
optional implementation, in this embodiment, whether
the host application is started is monitored while whether
the conditions for creating a running container are met
is monitored; if it is determined the host application is
started, it is determined that the conditions for creating
a running container are met; and if it is determined the
host application is not started, it is determined that the
conditions for creating a running container are not met.
[0035] In the case of monitoring whether to start the
host application, it can be monitored by monitoring
whether the host application is included in the process,
or it can be monitored by monitoring whether the user
starts the host application client, which is not limited in
this embodiment.
[0036] In this embodiment, whether the condition for
creating the running container is met is monitored by
monitoring whether the host application is started; if yes,
it is determined that the condition for creating a running
container is met; and if not, it is determined that the con-
dition for creating a running container is not met. It is
possible to make the process of creating the running con-
tainer as early as possible to provide sufficient time for
the preprocessing process of the accessory application,
so as to start the accessory application instantly when
the accessory application is started.
[0037] Step 202, creating, if it is determined that the
condition for creating the running container is met, the
first running container and the second running container
in the background.

7 8 



EP 3 812 898 A2

6

5

10

15

20

25

30

35

40

45

50

55

[0038] In this embodiment, if it is determined that the
condition for creating a running container is met, two run-
ning containers are created in the background. Where
one is a first running container and one is a second run-
ning container.
[0039] Where the first running container is configured
to preprocess the accessory application that meets the
preprocessing condition firstly, and the second running
container is configured to preprocess another accessory
application that meets the preprocessing condition later.
[0040] In this embodiment, when the conditions for cre-
ating a running container are met, a first running container
and a second running container are created in the back-
ground, which can avoid excessively consuming memory
resources due to the excessive number of running con-
tainers when the preprocessing processes of different
accessory applications are physically isolated complete-
ly through corresponding the running container.
[0041] Step 203, determining, if it is determined that
both a first accessory application and a second acces-
sory application are included in a resource result page
in a display area, that preloading conditions of the first
accessory application and the second accessory appli-
cation are met.
[0042] Where the first accessory application is located
in front of the second accessory application on the re-
source result page.
[0043] Optionally, in this embodiment, either in the
searching scenario or in the recommendation scenario
of the information flow, the resource result page will be
displayed in the display area of the host application. The
resource result page is checked. If it is determined that
two accessory applications are successively displayed
on the resource result page, namely the first accessory
application and the second accessory application, it is
determined that the preloading conditions of the first ac-
cessory application and the second accessory applica-
tion are met.
[0044] Step 204, preloading the first accessory appli-
cation by using the first running container in the back-
ground and preloading the second accessory application
by using the second running container.
[0045] In this embodiment, if it is determined that the
preloading condition of the first accessory application is
met, the first accessory application is preloaded by using
the first running container in the background. Firstly, in
the first running container, the application framework of
the first accessory application is preloaded. Afterwards,
based on the application framework, the installation
package of the first accessory application is downloaded
from the first auxiliary application server, and the setting
startup file in the installation package is preloaded in the
first running container.
[0046] Likewise, if it is determined that the preloading
condition of the second accessory application is met, the
second accessory application is preloaded, by using the
second running container in the background. Firstly, in
the second running container, the application framework

of the second accessory application is preloaded. After-
wards, based on the application framework, the installa-
tion package of the second accessory application is
downloaded from the second application server, and the
setting startup file in the installation package is preloaded
in the second running container.
[0047] Where the preloaded accessory application in-
cludes a corresponding target function that is used to
indicate that when it is determined that the corresponding
accessory application meet the download conditions of
the service data, the service data of the corresponding
accessory application is pre-downloaded in the corre-
sponding running container, and the startup display page
of the corresponding accessory application is rendered
and generated in the corresponding running container.
[0048] Specifically, in this embodiment, after the first
accessory application is preloaded in the first running
container, the preloaded first accessory application in-
cludes a corresponding target function which is the first
target function. It is triggered to perform the first target
function when the first accessory application is in the
prefetching life cycle, so that when it is determined that
the environment description information of the first ac-
cessory application meets the preset condition, it is de-
termined that the first accessory application meets the
download condition of the service data, and the service
data of the first accessory application is pre-downloaded
in the main running container.
[0049] Likewise, after preloading the second accesso-
ry application in the second running container, the
preloaded second accessory application includes the
corresponding target function which is the second target
function. It is triggered to perform the second target func-
tion when the second accessory application is in the
prefetching life cycle, so that when it is determined that
the environment description information of the second
accessory application meets the preset condition, it is
determined that the second accessory application meets
the download condition of service data, and the service
data of the second accessory application is pre-down-
loaded in the standby running container.
[0050] Where the prefetching life cycle may be: the ac-
cessory application is in a sliding state in the display area,
the accessory application is in a hovering state in the
display area, the accessory application is in a clicking
state in the display area, etc. The environment descrip-
tion information may be: the current display state of the
accessory application, the entry information of the ac-
cessory application, the page description information of
the page to be displayed of the accessory application, etc.
[0051] Where the preset condition may be: the current
display state of the accessory application is the preset
display state. For example, the preset condition is: the
current display state of the accessory application is the
clicking state, or the preset condition may also be: the
entry information of the accessory application is the pre-
set entry information. For example, the preset condition
is: the entry information of the accessory application is a

9 10 



EP 3 812 898 A2

7

5

10

15

20

25

30

35

40

45

50

55

search scenario. Or the preset condition may also be:
the page description information of the page to be dis-
played of the accessory application is the preset page
description information. For example, the preset condi-
tion is: the page description information of the page to
be displayed on the accessory application side is a first-
level page.
[0052] Taking the pre-downloading of service data by
the first accessory application in the first running contain-
er as an example to explain in details. Specifically, in this
embodiment, the preloaded first accessory application
detects the prefetching life cycle in the first running con-
tainer, if it is detected that the current first accessory ap-
plication is in the prefetching life cycle, it is triggered to
perform the target function included in the first accessory
application. The environment description information of
the first auxiliary application is input into the target func-
tion, by which the preset condition is defined in advance.
It is determined whether the input environment descrip-
tion information meets the preset condition; if yes, it is
determined that download condition of the service data
is met, the service data acquiring request is constructed
and then sent to the first accessory application server,
the service data of the first accessory application fed back
by the first accessory application server is received and
stored in the main running container, and a startup dis-
play page corresponding to the accessory application is
rendered and generated according to the service data of
the first accessory application.
[0053] Step 205, starting a corresponding accessory
application in a foreground, in response to a selection
operation to the accessory application.
[0054] In this embodiment, the implementation of step
205 is similar to that of step 102 in Embodiment 1 of the
present application, which will not be repeated herein.
[0055] Step 206, destroying the running container cor-
responding to the non-started accessory application so
as to destroy the non-started accessory application.
[0056] Optionally, in this embodiment, if the first ac-
cessory application is started, it indicates that the second
accessory application will not be started. Therefore, for
the purpose of reducing the memory resource consump-
tion, the second running container corresponding to the
second accessory application is destroyed. When the
second running container is destroyed, the data of the
second accessory application in the preprocessing stage
is also destroyed.
[0057] Otherwise, optionally, if the second accessory
application is started, it indicates that the first accessory
application will not be started. Therefore, for the purpose
of reducing the memory resource consumption, the first
running container corresponding to the first accessory
application is destroyed. When the second running con-
tainer is destroyed, the data of the first accessory appli-
cation in the preprocessing stage is also destroyed.
[0058] Step 207, destroying the running container cor-
responding to the accessory application performing the
closing operation if the closing operation of the started

accessory application is monitored.
[0059] Optionally, in this embodiment, after the user
starts an accessory application, the status of the acces-
sory application is monitored. If it is monitored that the
user has performed a closing operation to the accessory
application, it indicates that the accessory application will
no longer be started. Therefore, for the purpose of re-
ducing the memory resource consumption, the running
container corresponding to the accessory application
performing the closing operation is destroyed, so as to
destroy the data of the accessory application performing
the closing operation in the preprocessing process.
[0060] It is understandable that after the running con-
tainer corresponding to the accessory application per-
forming the closing operation is destroyed, a correspond-
ing idle running container is created to ensure, at any
time, that two running containers are available and at
least one running container is in an idle state. Other ac-
cessory applications are preprocessed, which not only
realizes the physical isolation between accessory appli-
cations, but also tries to ensure that each accessory ap-
plication is started instantly.
[0061] Step 208, monitoring whether there is an update
operation to the resource result page in the display area;
if yes, performing step 209, otherwise, exit.
[0062] Step 209, creating another running container.
[0063] Optionally, in this embodiment, after the started
accessory application is closed, if the user updates the
operation on the resource result page in the display area,
it indicates that the user may start other accessory ap-
plications displayed in the updated resource result page.
Therefore, if it is monitored that there is an update oper-
ation to the resource result page in the display area, an-
other running container is created. The running container
can be used to preprocess other accessory applications
displayed on the updated resource result page, so as to
ensure that at least one running container is in an idle
state for preprocessing other accessory applications,
which not only realizes the physical isolation between
accessory applications, but also tries to ensure that each
accessory application is started instantly.
[0064] Where the update operation performed by the
user on the resource result page in the display area may
be: the user’s sliding operation or other update opera-
tions on the resource result page in the display area,
which are not limited in this embodiment.
[0065] With respect to the application startup method
provided by this embodiment, when it is determined that
both the first accessory application and the second ac-
cessory application are included in the resource result
page in the display area, it is determined that the pre-
processing condition of at least one accessory applica-
tion is met. The first accessory application is preloaded
by using the first running container in the background,
and the second accessory application is preloaded by
using the second running container, which may satisfy
the scenario where the corresponding accessory appli-
cation is preprocessed by using the corresponding run-

11 12 



EP 3 812 898 A2

8

5

10

15

20

25

30

35

40

45

50

55

ning container in the background when two accessory
applications are displayed on the resource result page
at the same time.

Embodiment 3

[0066] FIG. 5 is a schematic flowchart of an application
startup method according to Embodiment 3 of the present
application. As shown in FIG. 5, on the basis of Embod-
iment 1 of the present application, the application startup
method provided in this embodiment further defines step
101 to step 102. The difference between Embodiment 3
and Embodiment 2 lies in the specific defining step of
step 101, and be similar to the Embodiment 12, following
steps are also included: creating the running container,
destroying the running container corresponding to the
non-started accessory application to destroy the non-
started accessory application, and destroying the run-
ning container corresponding to the accessory applica-
tion performing the closing operation if the closing oper-
ation to the started accessory application is monitored.
Therefore, the application startup method provided in this
embodiment includes the following steps.
[0067] Step 301, monitoring whether a condition for
creating the running container is met.
[0068] Step 302, creating, if it is determined that the
condition for creating the running container is met, the
first running container and the second running container
in the background.
[0069] In this embodiment, the implementation of step
301 to step 302 is similar to that of step 201 to step 202
in Embodiment 2 of the present application, which will
not be repeated herein.
[0070] Step 303, determining, if it is determined that
the first accessory application is included in the resource
result page in the display area, that the preloading con-
dition of the first accessory application is met.
[0071] Optionally, in this embodiment, only the first ac-
cessory application is included in the current resource
result page in the display area, which indicates that only
the preloading condition of the first accessory application
is met. At present, only the step of preloading the first
accessory application by using the first running container
in the background is performed.
[0072] Step 304, preloading the first accessory appli-
cation by using the first running container in the back-
ground.
[0073] In this embodiment, the implementation of step
304 is similar to that of step 204 in Embodiment 2 in which
the first accessory application is preloaded by using the
first running container in the background, which will not
be repeated herein.
[0074] Step 305, determining, if it is determined that
the updated resource result page includes the second
accessory application, that the preloading condition of
the second accessory application is met, in response to
an update operation to the resource result page in the
display area.

[0075] Optionally, in this embodiment, when the user
updates the resource result page in the display area, if
the updated resource result page includes the second
accessory application in the process of updating the re-
source result page, it is determined that the preloading
condition of the second accessory application is met.
[0076] Where the update operation performed by the
user on the resource result page in the display area may
be: the user’s sliding operation on the resource result
page in the display area, or other update operations,
which are not limited in this embodiment.
[0077] It is understandable that a situation occurs in
the updated resource result page, that is, both the second
accessory application and the first accessory application
are available.
[0078] Step 306, preloading the second accessory ap-
plication by using the second running container in the
background.
[0079] In this embodiment, the implementation of step
306 is similar to that of step 204 in Embodiment 2 in which
the second accessory application is preloaded by using
the second running container in the background, which
will not be repeated herein.
[0080] Where the preloaded accessory application in-
cludes a corresponding target function that is used to
indicate that when it is determined that the corresponding
accessory application meet the download condition of
the service data, the service data of the corresponding
accessory application is pre-downloaded in the corre-
sponding running container, and the startup display page
of the corresponding accessory application is rendered
and generated in the corresponding running container.
[0081] Step 307, starting a corresponding accessory
application in a foreground, in response to a selection
operation to the accessory application.
[0082] Step 308, destroying the running container cor-
responding to the non-started accessory application so
as to destroy the non-started accessory application.
[0083] Step 309, destroying the running container cor-
responding to the accessory application performing the
closing operation if the closing operation of the started
accessory application is monitored.
[0084] Step 310, monitoring whether there is an update
operation to the resource result page in the display area;
if yes, performing step 311, otherwise, exit.
[0085] Step 311, creating another running container.
[0086] In this embodiment, the implementation of step
307 to step 311 is similar to that of step 205 to step 209
in Embodiment 2 of the present application, which will
not be repeated herein.
[0087] With respect to the application startup method
provided by this embodiment, if it is determined that the
first accessory application is included in the resource re-
sult page in the display area, it is determined that the
preloading condition of the first accessory application is
met, and the first accessory application is preloaded by
using the first running container in the background; in
response to the update operation to the resource result

13 14 



EP 3 812 898 A2

9

5

10

15

20

25

30

35

40

45

50

55

page in the display area, if it is determined that the second
accessory application is included in the updated resource
result page, it is determined that the preloading condition
of the second accessory application are met; and the
second accessory application is preloaded by using the
second running container in the background. In this way,
it may satisfy the scenario that the corresponding acces-
sory applications are preprocessed by using the corre-
sponding running container in the background when
there are two accessory applications as the resource re-
sult page is updated.
[0088] It should be noted that various implementations
in Embodiment 2 and Embodiment 3 can be implemented
separately, or can be implemented in any combination
without conflict, which is not limited in the present appli-
cation.

Embodiment 4

[0089] FIG. 6 is a schematic structural diagram of an
application startup apparatus according to Embodiment
4 of the present application. As shown in FIG. 6, the ap-
plication startup apparatus provided in this embodiment
is applied to a host application that is carried with at least
one accessory application and is located in an electronic
device. The application startup apparatus 600 includes:
an application preprocessing module 601 and an appli-
cation startup module 602.
[0090] Where the application preprocessing module
601 is configured to preprocess, if it is determined that a
preprocessing condition of the at least one accessory
application is met, an accessory application by using a
corresponding running container in a background. The
application startup module 602 is configured to start a
corresponding accessory application in a foreground, in
response to a selection operation to the accessory ap-
plication.
[0091] The application startup apparatus provided in
this embodiment may perform the technical solution of
the method embodiment shown in FIG. 3, and its imple-
mentation principle and technical effect are similar to
those of the method embodiment shown in FIG. 3, which
will not be repeated herein.

Embodiment 5

[0092] FIG. 7 is a schematic structural diagram of AN
application startup apparatus according to Embodiment
5 of the present application. As shown in FIG. 7, the ap-
plication startup apparatus 700 provided in this embod-
iment, on the basis of the application startup apparatus
600 provided in Embodiment 4, further includes: an ap-
plication destroying module 701, a first creating module
702 and a second creating module 703.
[0093] Optionally, the running container includes a first
running container and a second running container.
[0094] Optionally, the application preprocessing mod-
ule 601 is specifically configured to:

determine, if it is determined that both a first accessory
application and a second accessory application are in-
cluded in a resource result page in a display area, that
preloading conditions of the first accessory application
and the second accessory application are met, where
the first accessory application is located in front of the
second accessory application on the resource result
page; and preload the first accessory application by using
the first running container in the background, and
preloading the second accessory application by using
the second running container.
[0095] Optionally, the application preprocessing mod-
ule 601 is specifically configured to:
determine, if it is determined that the first accessory ap-
plication is included in the resource result page in the
display area, that the preloading condition of the first ac-
cessory application is met; preload the first accessory
application by using the first running container in the
background; determine, if it is determined that the updat-
ed resource result page includes the second accessory
application, that the preloading condition of the second
accessory application is met, in response to an update
operation to the resource result page in the display area;
and preload the second accessory application by using
the second running container in the background.
[0096] Where an preloaded accessory application in-
cludes a corresponding target function that is configured
to indicate to, when it is determined that the correspond-
ing accessory application meet a download condition of
service data, pre-download the service data of the cor-
responding accessory application in the corresponding
running container, and render and generate a startup dis-
play page of the corresponding accessory application in
the corresponding running container.
[0097] Optionally, the application destroying module
701 is configured to destroy the running container corre-
sponding to a non-started accessory application so as to
destroy the non-started accessory application.
[0098] Optionally, the first creating module 702 is con-
figured to monitor, if a closing operation of a started ac-
cessory application is monitored, whether there is an up-
date operation to the resource result page in the display
area; and create, if the update operation to the resource
result page is monitored in the display area, another run-
ning container.
[0099] Optionally, the application destroying module
701 is further configured to:
destroy the running container corresponding to the ac-
cessory application performing the closing operation.
[0100] Optionally, the first second creating module 703
is configured to monitor whether a condition for creating
the running container is met; and create, if it is determined
that the condition for creating the running container is
met, the first running container and the second running
container in the background.
[0101] Optionally, the first second creating module
703, when monitoring whether a condition for creating
the running container is met, is specifically configured to:

15 16 



EP 3 812 898 A2

10

5

10

15

20

25

30

35

40

45

50

55

monitor whether the host application is started; deter-
mine, if it is determined to that the host application is
started, that the condition for creating the running con-
tainer is met; and determine, if it is determined that the
host application is not started, that the condition for cre-
ating the running container is not met.
[0102] The application startup apparatus provided in
this embodiment may perform the technical solution of
the method embodiment shown in FIGs. 4 to 5, and its
implementation principles and technical effect are similar
to those of the method embodiments shown in FIGs. 4
to 5, which will not be repeated herein.
[0103] According to the embodiment of the present ap-
plication, the present application also provides an elec-
tronic device and a readable storage medium.
[0104] As shown in FIG. 8, which is a block diagram
of an electronic device used to implement the application
startup method according to the embodiment of the
present application. The electronic device refers to var-
ious forms of digital computers, such as laptop comput-
ers, desktop computers, workstations, personal digital
assistants, servers, blade servers, mainframe comput-
ers, and other suitable computers. The electronic device
may also represent various forms of mobile devices, such
as personal digital assistants, cellular phones, smart
phones, wearable devices, and other similar computing
apparatuses. The components shown herein, their con-
nections and relationships, and their functions are merely
illustrative of and not restrictive on the implementation of
the present application described and/or required herein.
[0105] As shown in FIG. 8, the electronic device in-
cludes one or more processors 801, a memory 802, and
interfaces for connecting various components, including
a high-speed interface and a low-speed interface. The
various components are connected to each other by us-
ing different buses, and can be installed on a common
motherboard or installed in other ways as required. The
processor may process instructions executed in the elec-
tronic device, which includes instructions stored in or on
the memory to display graphical information of the GUI
on an external input/output device (such as a display de-
vice coupled to an interface). In other implementations,
multiple processors and/or multiple buses may be used
together with multiple memories, if necessary. Likewise,
multiple electronic devices can be connected, and each
device provides some necessary operations (for exam-
ple, as a server array, a group of blade servers, or a multi-
processor system). One processor 801 is taken as an
example in FIG. 8.
[0106] The memory 802 is a non-transitory computer-
readable storage medium provided by the present appli-
cation. Where the memory stores instructions that can
be executed by at least one processor, so that the at least
one processor performs the application startup method
provided in the present application. The non-transitory
computer-readable storage medium of the present ap-
plication stores computer instructions that are used to
cause the computer to perform the application startup

method provided in the present application.
[0107] As a non-transitory computer-readable storage
medium, the memory 802 can be used to store non-tran-
sitory software programs, non-transitory computer exe-
cutable programs and modules, for example, the appli-
cation instructions/modules corresponding to the appli-
cation startup method in the embodiment of the present
application (e.g., the application preprocessing module
601 and the application startup module 602 shown in
FIG. 6). The processor 801 executes various functional
applications and data processing of the server by running
non-transitory software programs, instructions, and mod-
ules stored in the memory 802, thereby implementing the
application startup method in the above method embod-
iment.
[0108] The memory 802 may include a program stor-
age area and a data storage area, where the program
storage area may store the operating system and the
application required by at least one function; and the data
storage area may store data created according to the
use of electronic device shown in FIG. 8. In addition, the
memory 802 may include a high-speed random access
memory, and may also include a non-transitory memory,
such as at least one magnetic disk storage device, a flash
memory device, or other non-transitory solid-state stor-
age devices. In some embodiments, the memory 802
may optionally include memories remotely provided rel-
ative to the processor 801, and these remote memories
can be connected to the electronic device shown in FIG.
8 through the network. Examples of the foregoing net-
works include, but are not limited to, the Internet, corpo-
rate intranets, local area networks, mobile communica-
tion networks, and combinations thereof.
[0109] The electronic device shown in FIG. 8 may fur-
ther include: an input apparatus 803 and an output ap-
paratus 804. The processor 801, the memory 802, the
input device 803 and the output device 804 may be con-
nected by a bus or in other ways, and the bus connection
is taken as an example in FIG. 8.
[0110] The input apparatus 803 can receive voice,
number or character information, and generate key signal
inputs related to the user settings and function control of
the electronic device in FIG. 8, for example, a touch
screen, a keypad, a mouse, a trackpad, a touchpad, a
pointing stick, one or more mouse buttons, a trackball, a
joystick and other input apparatuses. The output device
804 may include a voice playback device, a display de-
vice, an auxiliary lighting apparatus (e.g., LED), a tactile
feedback apparatus (e.g., a vibration motor), and the like.
The display device may include, but is not limited to, a
liquid crystal display (LCD), a light emitting diode (LED)
display, and a plasma display. In some embodiments,
the display device may be a touch screen.
[0111] According to the embodiment of the present ap-
plication, where the present application also provides a
computer program product, the program product in-
cludes: a computer program, the computer program is
stored in a readable storage medium, at least one proc-

17 18 



EP 3 812 898 A2

11

5

10

15

20

25

30

35

40

45

50

55

essor of the electronic device can read the computer pro-
gram from a readable storage medium, and at least one
processor executes the computer program to make the
electronic device execute the solution provided by any
of the foregoing embodiments.
[0112] Various implementations of the system and
technology described herein can be implemented in dig-
ital electronic circuit systems, integrated circuit systems,
ASIC (application specific integrated circuit), computer
hardware, firmware, software, and/or combinations
thereof. These various implementations may include: im-
plemented in one or more computer programs, where
the one or more computer programs may be executed
and/or interpreted on a programmable system including
at least one programmable processor, and the program-
mable processor can be a dedicated or general program-
mable processor, can receive data and instructions from
a storage system, at least one input apparatus and at
least one output apparatus, and can transmit data and
instructions to the storage system, the at least one input
apparatus and the at least one output apparatus.
[0113] These computer programs (also referred to as
programs, software, software applications, or code) in-
clude machine instructions for programmable proces-
sors, and can be implemented by using high-level proc-
ess and/or object-oriented programming language,
and/or assembly/machine language. As used herein, the
terms "machine-readable medium" and "computer-read-
able medium" refer to any computer program product,
device, and/or apparatus (for example, magnetic disk,
optical disk, memory, programmable logic device (PLD))
used to provide machine instructions and/or data to a
programmable processor. It includes a machine-reada-
ble medium that receives machine instructions as ma-
chine-readable signals. The term "machine-readable sig-
nal" refers to any signal used to provide machine instruc-
tions and/or data to a programmable processor.
[0114] In order to provide interaction with the user, the
system and the technology described here can be imple-
mented on a computer that has: a display apparatus used
to display information to users (for example, a CRT (cath-
ode ray tube) or LCD (liquid crystal display) monitor); and
a keyboard and a pointing apparatus (for example, a
mouse or a trackball), through which the user can provide
the input to the computer. Other types of apparatuses
can also be used to provide interaction with the user; for
example, the feedback provided to the user can be any
form of sensory feedback (for example, visual feedback,
auditory feedback, or tactile feedback); and any form (in-
cluding sound input, voice input or tactile input) can be
used to receive input from the user.
[0115] The system and technology described here can
be implemented in a computing system that includes a
back-end component (for example, as a data server), or
a computing system that includes a middleware compo-
nent (for example, an application server), or a computing
system that includes a front-end component (for exam-
ple, a user computer with a graphical user interface or a

web browser, and the user can interact with the imple-
mentation of the system and technology described here
through the graphical user interface or the web browser),
or a computing system that includes any combination of
such back-end component, middleware component, or
front-end component. The components of the system can
be connected to each other through any form or medium
of digital data communication (for example, a communi-
cation network). Examples of communication networks
include: local area network (LAN), wide area network
(WAN), and the Internet.
[0116] The computer system can include a client and
a server that are generally far away from each other and
usually interact with each other through a communication
network. The relationship between the client and the
server is generated by computer programs running on
corresponding computers and having a client-server re-
lationship with each other.
[0117] With respect to the technical solution according
to the embodiment of the present application, since if it
is determined that the preprocessing conditions of at
least one accessory application are met, the accessory
application is pro-processed in the background by using
the corresponding running container; and in response to
the selection operation to the accessory application, the
corresponding accessory application is started in the
foreground. When preprocessing the accessory applica-
tion, the corresponding running container is used in the
background to preprocess the accessory application, so
that preprocessing processes of different accessory ap-
plications can be physically isolated, completely, through
the running container and mutual interference can be
avoided, thereby protecting a running sandbox mecha-
nism between accessory applications, realizing free in-
stallation of corresponding accessory application in the
running container, and improving security during acces-
sory application preprocessing. Moreover, since each
running container is an independent single-threaded
task, when an accessory application is preloaded in the
corresponding running container, if the user starts anoth-
er accessory application, such accessory application can
also be started directly in the corresponding running con-
tainer. It is not necessary to start the accessory applica-
tion after the preloading of the other accessory applica-
tion is completed. The speed of starting the accessory
application is improved and the startup performance deg-
radation is avoided.
[0118] It should be understood that the various forms
of processes shown above can be used to reorder, add
or delete steps. For example, the steps described in the
present application can be performed in parallel, sequen-
tially, or in a different order, as long as the desired result
of the technical solution disclosed in the present appli-
cation can be achieved, which is not limited herein.
[0119] The foregoing specific implementations do not
constitute a limitation on the scope of protection of the
present application. Those skilled in the art should un-
derstand that various modifications, combinations, sub-

19 20 



EP 3 812 898 A2

12

5

10

15

20

25

30

35

40

45

50

55

combinations, and substitutions can be made according
to design requirements and other factors. Any amend-
ments, equivalent substitutions and improvements made
within the spirit and principles of the present application
shall be included in the scope of protection of the present
application.

Claims

1. An application startup method, wherein the method
is applied to a host application having carried thereon
at least one accessory application, and the method
comprises:

preprocessing (S101), if it is determined that a
preprocessing condition of the at least one ac-
cessory application is met, an accessory appli-
cation by using a corresponding running con-
tainer in a background; and
starting (S 102) a corresponding accessory ap-
plication in a foreground, in response to a selec-
tion operation to the accessory application.

2. The method according to claim 1, wherein the run-
ning container comprises a first running container
and a second running container.

3. The method according to claim 2, wherein the pre-
processing (S101), if it is determined that a preproc-
essing condition of the at least one accessory appli-
cation is met, an accessory application by using a
corresponding running container in a background
comprises:

determining (S203), if it is determined that both
a first accessory application and a second ac-
cessory application are comprised in a resource
result page in a display area, that preloading
conditions of the first accessory application and
the second accessory application are met,
wherein the first accessory application is located
in front of the second accessory application on
the resource result page; and
preloading (S204) the first accessory application
by using the first running container in the back-
ground, and preloading the second accessory
application by using the second running contain-
er.

4. The method according to claim 2, wherein the pre-
processing (S101), if it is determined that a preproc-
essing condition of the at least one accessory appli-
cation is met, an accessory application by using a
corresponding running container in a background
comprises:

determining (S303), if it is determined that the

first accessory application is comprised in the
resource result page in the display area, that the
preloading condition of the first accessory appli-
cation is met;
preloading (S304) the first accessory application
by using the first running container in the back-
ground;
determining (S305), if it is determined that the
updated resource result page comprises the
second accessory application, that the preload-
ing condition of the second accessory applica-
tion is met, in response to an update operation
to the resource result page in the display area;
and
preloading (S306) the second accessory appli-
cation by using the second running container in
the background.

5. The method according to claim 3 or 4, wherein an
preloaded accessory application comprises a corre-
sponding target function that is used to indicate to,
when it is determined that the corresponding acces-
sory application meet a download condition of serv-
ice data, pre-download the service data of the cor-
responding accessory application in the correspond-
ing running container, and render and generate a
startup display page of the corresponding accessory
application in the corresponding running container.

6. The method according to any one of claims 1 to 4,
wherein after the starting (S102) a corresponding
accessory application in a foreground, in response
to a selection operation to the accessory application,
the method further comprises:
destroying (S206) the running container correspond-
ing to a non-started accessory application so as to
destroy the non-started accessory application.

7. The method according to claim 6, further comprising:

monitoring, if a closing operation of a started ac-
cessory application is monitored, whether there
is an update operation to the resource result
page in the display area; and
creating, if the update operation to the resource
result page is monitored in the display area, an-
other running container.

8. The method according to claim 7, wherein if a closing
operation of a started accessory application is mon-
itored, the method further comprises:
destroying the running container corresponding to
the accessory application performing the closing op-
eration.

9. The method according to claim 2, wherein before the
preprocessing, if it is determined that a preprocess-
ing condition of the at least one accessory applica-

21 22 



EP 3 812 898 A2

13

5

10

15

20

25

30

35

40

45

50

55

tion is met, an accessory application by using a cor-
responding running container in a background, the
method further comprises:

monitoring whether a condition for creating the
running container is met; and
creating, if it is determined that the condition for
creating the running container is met, the first
running container and the second running con-
tainer in the background.

10. The method according to claim 9, wherein the mon-
itoring whether a condition for creating the running
container is met comprises:

monitoring whether the host application is start-
ed;
determining, if it is determined that the host ap-
plication is started, that the condition for creating
the running container is met; and
determining, if it is determined that the host ap-
plication is not started, that the condition for cre-
ating the running container is not met.

11. An electronic device, comprising:

at least one processor; and
a memory communicatively connected with the
at least one processor; wherein,
the memory stores instructions executable by
the at least one processor, and the instructions
are executed by the at least one processor to
enable the at least one processor to perform the
method according to any one of claims 1 to 10.

12. A non-transitory computer-readable storage medi-
um storing computer instructions, wherein the com-
puter instructions are used to cause the computer to
perform the method according to any one of claims
1 to 10.

13. A computer program product, comprising a compu-
ter program, when executed by a processor, imple-
ments the method according to any one of claims 1
to 10.

23 24 



EP 3 812 898 A2

14



EP 3 812 898 A2

15



EP 3 812 898 A2

16



EP 3 812 898 A2

17



EP 3 812 898 A2

18



EP 3 812 898 A2

19


	bibliography
	abstract
	description
	claims
	drawings

